LABORATORY CALCULATIONS

Patti Jones, PhD
UT Southwestern Medical Center
Children's Medical Center Dallas

Learning Objectives

\qquad

- Understand and be able to use the following
types of calculations:
\qquad
- Reference intervals
- Sensitivity/specificity \qquad
- ROC curve
- Student t test
- Volume of distribution
- Beer's Law
- Enzyme kinetics \qquad
- Basic management calculations
- Buffers \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference intervals

- Validating a reference interval?
- 20 - 60 reference individuals
- Transferring a reference interval?

$$
\text { - } 20 \text { - } \mathbf{6 0} \text { reference individuals }
$$

- Establishing a reference interval
- On a test with well-defined inclusion/exclusion criteria? - a priori sampling - 120 healthy individuals in each partition to get 90% C.I. at $95^{\text {th }}$ percentile
- On a new analyte? - a posteriori sampling - as many as you can analyze

Reference intervals

- Establishing a reference interval
-Look at data distribution! - why?
- Example: Chloride on CAVH fluid
- N = 56
- Mean = 101
- Median 100
- SD = 7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reference interval for 3-OH-C16

requency histogram

3-OH-C16 reference interval

- $N=197$
- Range = 0.2 - 1.5
- Mean $=0.53 ;$ median $=0.50$
- Non-parametric 95% reference interval: \qquad
- $2.5^{\text {th }}=0.025(198)=4.95=5^{\text {th }}$ value
- $97.5^{\text {th }}=0.975(198)=193^{\text {rd }}$ value
0.3-1.2

\qquad
\qquad
\qquad

Transferring a reference interval

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clinical validity / utility of a test: \qquad sensitivity/specificity/predictive values

- Specificity: the frequency of a negative test when no disease is present; ability to rule out a disease

$$
\text { Spec. }=\frac{T N}{T N+F P} \quad \times 100=\quad(\%)
$$

- Sensitivity: the frequency of a positive test when disease is present; ability of test to detect disease

$$
\text { Sens. }=\frac{T P}{T P+F N} \times 100=\quad(\%)
$$

Sensitivity/specificity

$$
\text { Spec. }=\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}} \times 100=(\%) \quad \text { Sens. }=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \times 100=(\%)
$$

\qquad

Sensitivity/specificity					
Spec. =	TN + FP	$x 100=\quad \text { (\%) }$	$\text { Sens. }=\mathrm{TP}$		X $100=(\%)$
3-OHFAs data - good test for diagnosing LCHAD and SCHAD?					
SCHAD			LCHAD		
	SCHAD	$\begin{gathered} \mathrm{No} \\ \text { SCHAD } \end{gathered}$		LCHAD	$\begin{array}{\|c} \mathrm{No} \\ \text { LCHAD } \end{array}$
Positive	6 (TP)	15 (FP)	Positive	8 (TP)	0 (FP)
Negative	0 (FN)	182 (TN)	Negative	0 (FN)	197 (TN)
Spec for SCHAD $=182 / 197 \times 100=92.4 \%$ Spec for LCHAD $=197 / 197 \times 100=100 \%$					
Sens for SCHAD $=6 / 6 \times 100=100 \%$			Sens for LCHAD $=8 / 8 \times 100=100 \%$		

\qquad
\qquad
\qquad
Spec for SCHAD $=182 / 197 \times 100=92.4 \% \quad$ Spec for LCHAD $=197 / 197 \times 100=100 \%$
Sens for SCHAD $=6 / 6 \times 100=100 \% \quad$ Sens for LCHAD $=8 / 8 \times 100=100 \%$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clinical/diagnostic utility

- Positive predictive value (PPV) - predictive value of a positive test \qquad
PPV $=\quad \frac{\text { TP }}{\text { TP + FP }} \quad \mathbf{X 1 0 0}=\quad \%$

For SCHAD: $6 / 21 \times 100=28.6 \%$ | In general, if prevalence |
| :--- |
| of disease is very low, get |
| more FP, and PPV is bad |

- Negative predictive value (NPV) - predictive value of a negative test

For SCHAD: 199/199 X100 = 100\%
For LCHAD: 197/197 X100 = 100\%
test good for ruling out both disorders
\qquad
\qquad
\qquad
\qquad
\qquad

ROC curves

- Graphical way to present sensitivity and specificity data
- Software also gives you
- PPV, NPV
- Likelihood ratios: +LR, -LR - likelihood a pos test will be seen in a patient with the disease compared to a patient without the disease
- $\uparrow+L R$ - the better the test is for diagnosing disease
- \uparrow-LR - the better the test is at ruling out the disease
- Sensitivity and specificity can be considered reciprocals
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ROC curves

\qquad

AUC $=1.00$
perfect test
100% sensitive and specific
AUC $=0.500$
test is no better than
flipping a coin
\qquad
\qquad
\qquad
\qquad
To set up a ROC curve

- For each data point, assign a 1 (disorder present) or a 0 , (disorder absent)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comparing ROC curves \qquad

\qquad
\qquad
\qquad

\qquad

\qquad

Student test

rcomporng a sande wit me posuason from which was secectiod

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

\qquad
\qquad
\qquad
Average age of attendees at a conference is 32
The ages of the 10 attendees in the front row are $35,37,40,30,34,35,38,32$, 34 and 39. Are older attendees more likely to sit on the front row?

$$
\begin{aligned}
t & =(35.4-32) \div(3.13 / \sqrt{ } 10) \\
& =3.4 \div(3.13 / 3.16) \\
& =3.4 / 0.99=3.4243
\end{aligned}
$$

Mean $=35.4$
$s=3.13$
$\mathrm{s}=3.13$
9 degrees of freedom

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Volume of Distribution $\left(\mathrm{V}_{\mathrm{d}}\right)$

- The Volume of Distribution $\left(\mathrm{V}_{\mathrm{d}}\right)$ is the amount of blood, \qquad per Kg body weight, necessary to contain all of the body burden of drug at equilibrium concentration.

Plasma Concentration $=\frac{\text { Total Body Stores }}{\text { Volume of Distribution }}$
\qquad
\qquad
\qquad
\qquad

Interpreting V_{d}

- Drugs with low V_{d} are contained mostly in the plasma, \qquad because...
- They are highly water soluble (plasma water content is higher than tissues), or
- They are highly protein bound (which prevents them from freely diffusing into tissues
- Drugs with high V_{d} are mostly in tissues, and plasma levels may not reflect body burden
\qquad
\qquad
\qquad
\qquad
\qquad

V_{d} calculation

A 175 lb man takes a 5 mg dose of phenobarbital $\left(\mathrm{V}_{\mathrm{d}}=1.0 \mathrm{~L} / \mathrm{Kg}\right)$. What is the maximum plasma phenobarbital concentration you can expect?
Plasma concentration $=$ total body stores \div volume of distribution \qquad $175 \mathrm{lb}=79.4 \mathrm{Kg}$
$C=(5 \mathrm{mg} / 79.4 \mathrm{Kg}) \div 1.0 \mathrm{~L} / \mathrm{Kg}$
$=0.063 \mathrm{mg} / \mathrm{Kg} \div 1.0 \mathrm{~L} / \mathrm{Kg}$
$=0.063 \mathrm{mg} / \mathrm{L}=0.063 \mu \mathrm{~g} / \mathrm{mL}$
\qquad
\qquad
\qquad
\qquad

V_{d} calculation

A 55 Kg woman has a plasma theophylline $\left(\mathrm{V}_{\mathrm{d}}=0.5 \mathrm{~L} / \mathrm{Kg}\right)$ concentration of $15 \mu \mathrm{~g} / \mathrm{L}$. What is her total body burden of theophylline?
\qquad

Plasma concentration $=$ total body stores \div volume of distribution \qquad
$15 \mu \mathrm{~g} / \mathrm{L}=$ (concentration $/ 55 \mathrm{Kg}$) $\div 0.5 \mathrm{~L} / \mathrm{Kg}$
$(15 \mu \mathrm{~g} / \mathrm{L})(0.5 \mathrm{Kg} / \mathrm{L})=$ concentration $/ 55 \mathrm{Kg}$
$7.5 \mu \mathrm{~g} / \mathrm{Kg}=$ concentration $/ 55 \mathrm{Kg}$
\qquad
$(7.5 \mu \mathrm{~g} / \mathrm{Kg})(55 \mathrm{Kg})=$ concentration
$412.5 \mu \mathrm{~g}$

Beer's Law

- The mathematical formula that expresses: concentration of an analyte dissolved in solution is directly proportional to it's absorbance.

Caveats:

1) Absorbance must be in the linear range (~0.05-2.0)
2) incident light must be monochromatic
one wavelength
3) no interfering substances may be present absorbances are additive

Beer's law	
$A=a b c$	
	$\begin{aligned} & \mathrm{A}=\text { absorbance } \\ & \mathrm{a}=\text { absorptivity coefficient } \\ & (\varepsilon=\text { molar units }) \\ & \mathrm{b}=\text { path length of light } \\ & \text { through sample } \\ & \mathrm{c}=\text { concentration } \end{aligned}$

Beer's Law

$\beta-\mathrm{OH}-$ butyrate $+\mathrm{NAD}^{+} \stackrel{3-\mathrm{HBD}}{\longleftrightarrow}$ acetoacetate + NADH + H^{+} \qquad

- 0.1 mL sample added to 2.7 mL buffer, $0.15 \mathrm{~mL} \mathrm{NAD}^{+}$(27 $\mathrm{mmol} / \mathrm{L})$, and $50 \mu \mathrm{~L} 3-\mathrm{HBD}$
(3 mL total volume: $0.1+2.7+0.15+0.05$)
- Measured absorbance of produced NADH relative to a blank at 340 nm in a 1 cm cell
$\mathrm{A}=0.57$
- Calculate the $\beta-\mathrm{OH}$-butyrate concentration
\qquad
\qquad
\qquad
\qquad
\qquad

β-OH-butyrate

\qquad

- $A=a b c$
\qquad
$\mathrm{A}=$ absorbance $=0.57$
$\varepsilon=$ molar absorptivity of NADH \qquad
$=6.22 \times 10^{3} \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}$
$b=$ path length of light \qquad
$c=$ concentration
$0.57=6.22 \times 10^{3} \times 1 \times c$

β-OH-butyrate

$0.57=6.22 \times 10^{3} \times 1 \times c$
$c=0.57 \div\left(6.22 \times 10^{3}\right)=9.2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$

Convert to mmol/L (multiply x 10^{3}) $=0.092 \mathrm{mmol} / \mathrm{L}$
$=\beta$-OH-butyrate in final mixture!
Calculate β-OHB in sample by multiplying by dilution factor $\left(\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{s}}\right)$

β-OH-butyrate

Total volume $=2.7+0.1+0.15+0.05=3.0 \mathrm{~mL}$
$(0.092 \mathrm{mmol} / \mathrm{L} \times 3.0 \mathrm{~mL}) \div 0.1 \mathrm{~mL}$
$=2.76 \mathrm{mmol} / \mathrm{L} \beta-\mathrm{OH}$-butyrate in the sample

Can do this in a single calculation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

β-OH-butyrate

Can do this in a single calculation \qquad
$c=\frac{(0.57)\left(10^{3}\right)(3.0)}{\left(6.22 \times 10^{3}\right)(0.1)}$

Careful to include all dilution factors and unit conversion factors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LD			
time	Abs		
0	0.081		
1	0.114		
2	0.146		
3	0.177		
4	0.211		
5	0.243		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LD

- $(\Delta \mathrm{Abs} / \varepsilon \times \mathrm{d})\left(10^{6}\right)\left(\mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{S}}\right)=\mathrm{U} / \mathrm{L}$
$\mathrm{c}=\frac{(0.032)\left(10^{6}\right)(1.05)}{\left(6.22 \times 10^{3}\right)(0.05)}=108 \mathrm{U} / \mathrm{L}$ $\left(6.22 \times 10^{3}\right)(0.05)$ \qquad
\qquad
\qquad
\qquad

Enzyme Kinetics

- Kinetics = mathematical description of a reaction as it is happening
- Michaelis and Menten developed a simple model for examining the kinetics of enzyme catalyzed reactions - ASSUMING:

$E+S \leftrightarrow E S \rightarrow E+P$

formation of ES is reversible
formation of $\mathrm{E}+\mathrm{P}$ is irreversible

- Michaelis-Menten plot
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Enzyme Kinetics

- Velocity (rate) of the reaction:
- at low [S]:
~straight line;
1st order with respect to [S]
-velocity depends on [S]
- at high [S]:
flat line
zero order with respect to [S]
Rate won't 介 no matter [S]
 unless enzyme concentration \uparrow -velocity depends on enzyme concentration

\qquad
\qquad
\qquad
\qquad
\qquad

Enzyme Kinetics		
$\underset{(\mu \mathrm{mmolmin})}{\mathrm{V}}$	[S] (mmoll)	What is $\mathrm{V}_{\text {max }}$?
60	200	
60	20	
60	2	
48	0.2	
45	0.15	
12	0.013	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Enzyme Kinetics		
v	$[\mathrm{~s}]$	
(umpolmin)	(mmoll)	What is $\mathbf{v}_{\text {max }}$?
60	200	
60	20	60 umol/min
60	2	
48	0.2	
45	0.15	
12	0.013	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Enzyme Kinetics		
$\underset{\substack{(\text { unomimin) } \\ 60}}{V}$	$\begin{gathered} {[\mathrm{S}]} \\ (\text { (mmoll) } \\ 200 \end{gathered}$	What is $\mathrm{V}_{\text {max }}$?
60	20	$60 \mu \mathrm{~mol} / \mathrm{min}$
60	2	
48	0.2	What is K_{m} ?
45	0.15	[$]_{\text {at }} 1 / 2 \mathrm{~V}_{\text {max }}$
12	0.013	[S] at $30 \mu \mathrm{~mol} / \mathrm{min}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Enzyme Kinetics

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lineweaver-Burk plot

- \quad Since plot of V vs. [S] is not a straight line, it is \qquad difficult to obtain accurate values of Vmax and Km
- The Lineweaver-Burk plot or double reciprocal plot is a linear transformation of the Michaelis-Menten equation

$$
\frac{1}{v}=\left\{\left[\frac{1}{S}\right]\left[\left(\frac{K m}{V} V_{\text {max }}\right]\right\}+\left(\frac{1}{V_{\text {max }}}\right)\right.
$$

This equation yields a straight line
Where: slope $=\mathrm{Km} / \mathrm{Vmax}$, y intercept $=1 / \mathrm{Vmax}$, x intercept $=-1 / \mathrm{Km}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lineweaver-Burk

$[\mathrm{S}]$	$V(\Delta \mathrm{~A})$
0.3 mM	0.020
0.6 mM	0.035
1.2 mM	0.048
4.8 mM	0.081

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$1 /[S]$	$1 / V$
3.33	50
1.67	31.7
0.83	20.8
0.21	12.3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lineweaver-Burk experiment

$-1 / \mathrm{Km}=-0.7$
$-1 /-0.7=1.43$
$\mathrm{Km}=1.43 \mathrm{mM}$
$1 / \mathrm{Vmax}=10$
$1 / 10=0.1$

Vmax $=0.1(\mathrm{abs} / \mathrm{min})$

Management - service contract?

- 75 i-stats at $\$ 9000.00$ each
- Service contract: \$30,000/year/20 I-stats
. $\$ 70,000$ to cover all 75 (instead of $\$ 82,500$)
- Replacement cost of $\$ 2500.00$ unit
- You have clumsy nurses and average needing to replace 16 units per year
- Do you need the service contract?
- What's the break even number of i-stats?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Management - service contract

- 75 i-stats at $\$ 9000.00$ each
- Service contract: $\$ 30,000 /$ year/ 20 I-stats to cover them, $\$ 70,000$ to
\qquad cover all 75.
- Replacement cost of $\$ 2500.00 / u n i$
- You have clumsy nurses and average needing to replace 16 units per year
$16 \times 2500=\$ 40,000.00$ Don't need a service contract.
$70,000 \div 2500=28$ Unless you start breaking more than 28 iStat/year, don't need a service contract

What if you had to buy a new i-Stat whenever you broke one? $\$ 9000$ rather than $\$ 2500$ per broken i-Stat

\qquad
\qquad
\qquad
\qquad

Management - bring that test in-house?

- Considerations -
- Current cost to send test out
- Current test volume
- Current TAT and perceived needs
- Tech time and workflow
- Instrumentation to run assay
- Newly available, FDA-approved assay on current chemistry platform
- LDT assay on esoteric instrument

Management - bring that test in-house?

- Considerations -
- Current cost to send test out
- Current test volume
- Current TAT and perceived needs
- Tech time and workflow
- Instrumentation to run assay
- Newly available assay on current chemistry platform
- Yes, unless:
- Volume is so low, won't break even on what the test costs

Costs more on chem platform than sending it out

- Volume is so high will impact workflow

Management - bring that test in-house?

\qquad

- Voriconazole -
- Current cost to send test out - $\$ 150.00 /$ test
- Current test volume - 1000/year
- Current TAT and perceived needs -4 days at best; want at least next day if possible
- Tech time and workflow - limited techs on esoteric equipment
- Instrumentation to run assay
- LDT assay on esoteric instrument - MS/MS assay

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad

Volume drops?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Volumes increased 45\%

Equilibrium constant - K_{a}

-When a weak acid dissociates it forms an equilibrium between the acid form and the H^{+}and base

$$
\mathrm{HA} \longleftrightarrow \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

That equilibrium can be described by a constant $\left(K_{a}\right)$ as: \qquad

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

\qquad
Henderson-Hasselbalch equation

$$
-\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}-\log [\mathrm{HA}]
$$

$$
\overline{[\mathrm{A} \cdot]}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \rightarrow \text { base }
$$

\qquad
\qquad
\qquad
\qquad

This is the Henderson-Hasselbalch equation
\qquad
\qquad

\qquad
\qquad

$$
\begin{aligned}
\text { If } \mathrm{tCO}_{2}= & 26 \mathrm{mM} \text { and } \mathrm{pCO}_{2}=37.7 \mathrm{~mm} \mathrm{Hg}, \text { what is } \mathrm{pH} \text { ? } \\
\mathrm{pH} & =6.1+\log \frac{26-(0.03)(37.7)}{(0.03)(37.7)} \\
\mathrm{pH} & =6.1+\log \frac{26-1.13}{1.13} \\
\mathrm{pH} & =6.1+\log \frac{24.87}{1.13} \\
\mathrm{pH} & =6.1+\log 22.01 \\
\mathrm{pH} & =6.1+1.34=7.44
\end{aligned}
$$

Acid/Base Ratio needed to make a buffer

A phosphate buffer, pH 5.7, using dibasic \qquad and monobasic phosphates, $\mathrm{pK}=6.7$ $\left(\mathrm{HPO}_{4}^{-2} / \mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right)$ (base/acid) \qquad

$$
5.7=6.7+\log \frac{\left[\mathrm{HPO}_{4}^{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]}
$$

$5.7-6.7=\log$ of the ratio
$-1=\log$ of ratio (take antilog of both sides of equation)
$0.1=$ ratio $=1: 10$

Make a buffer

A 150 mM citrate buffer, pH 5.2 ; given: $\mathrm{pK}=4.77$, citric acid MW = 192.12, Na citrate MW = 215.12

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}+\log \frac{\text { [base }]}{[\text { acid }]} \quad 5.2=4.77+\log \frac{[\text { base }]}{[\text { acid }]} \\
& 0.43=\log \frac{\text { base] }}{\text { [acid] }} \\
& 2.69=\text { ratio of base to acid } \\
& \text { so need: } \quad 2.69 \text { moles } / \mathrm{L} \text { base : } 1 \text { mole } / \mathrm{L} \text { acid }
\end{aligned}
$$

\qquad

