Diagnosis at the Point of Care with a Smartphone Dongle

Tiffany W. Guo, SB Columbia University Department of Biomedical Engineering New York, NY

Learning objectives

- Explain benefits of using microfluidic technologies in point-of-care (POC) devices.
- Describe utility of smartphones in expanding access to point-of-care diagnostics.
- Identify opportunities and advantages of early testing with target users.

Worldwide disease burden

Adapted from: WHO Global burden of Disease (GBD). Geneva: WHO; 2012.

Vast differences in resources

High resource setting

Low resource setting

Microfluidics miniaturizes assays

Fast reaction time, low sample volume, low reagent consumption

Microfluidics-based immunoassay

Triplex: antenatal care panel

- HIV (gp41, gp36, O-IDR)
- Syphilis treponemal (r17)
- Syphilis non-trep (cardiolipin)

Quantitative optical detection

Quantitative optical detection

Boom in consumer electronics

1946

2007

Smartphones are powerful tools enabled by advancements in semiconductor technology.

Coupling microfluidics with smartphones

- Smartphones
 - Fast computing power
 - Interactive interface for training/education
 - Communication to centralized databases

The combination of **microfluidics** and **smartphone** technology has the potential to bring previously inaccessible diagnostic technology to the point of care.

Smartphone dongle

Power-free vacuum

- Low-power
- Reduced price

Audio jack power/data

- Portable power source
- Universal interface

Microfluidic test

- 15 min assay time
- Auto-reagent handling
- Multiplexing

Low-cost optics

- Objective readout
- Reduced price

User-friendly app

• Low training burden

Automated reagent handling

Power-free fluid flow

3D printed dongle case

7cm x 5cm x 5cm, 130 gm

Audiojack powering and data transmission

Extremely-low power consumption

In-app directions

Enter Patient ID

	Enter	
1	2 АВС	3 Def
4 сні	5 JKL	6 MNO
7 PQRS	8 тиv	9 wxyz
	0	×

Clear objective results

Using the device

Testing in the field

- Healthcare workers used our devices in 3 clinics around Kigali, Rwanda.
- This testing represents first trial with:
 - Target end-users
 - Fingerprick whole blood

Treponemal and Non-treponemal markers

Lyophilized gold secondary antibodies

Lyophilizing antibodies provided increased stability and portability.

Prepared microfluidic tests at Columbia

The robotic arm helped to create large consistent batches (100 microfluidic cassettes).

Study participants: patients

Patients	(<i>n</i> = 96)
Average age	31 (21-62)
Gender	
Male	40
Female (preg)	56 (23)
Clinic	
VCT (Voluntary counseling and testing)	52
PMTCT (Prevention of mother to child transmission)	38
GC (General consultation)	6

Study participants: healthcare workers

Healthcare workers	(<i>n</i> = 5)
Background	
Laboratory technicians	5
Experience with RDT	5
Experience with fingerprick	5
Nursing education	3

Received 30 minute training

- Visual demonstration and individual practice

Fingerprick testing: HIV

Reference test: HIV ELISA Sensitivity: 100% (59-100) Specificity: 87% (78-99)

Fingerprick testing: Treponemal syphilis

Reference test: TPHA

Sensitivity: 92% (64-100) Specificity: 92% (83-97)

Fingerprick testing: Non-treponemal syphilis

Sensitivity: 100% (48-100) Specificity: 79% (69-87)

Venipuncture testing: showed similar results

Patient feedback

Overall dongle preference

Patient feedback

Healthcare worker feedback

- Felt it was simple to operate
- Valued multiplexing capability, objective readout, fast turn-around
- Suggested use in low patient-volume settings (mobile clinics)
- Suggested use as back-up test in power outages

Conclusions

- Healthcare workers could operate the assay after a short **30 minute training**.
- The device showed **comparable results** to other diagnostic tests run in the field.
- Testing in the intended setting gave us valuable feedback from the user.
- Smartphones and low-power engineering enabled truly POC diagnostic testing.

Acknowledgements

Sia Lab, Columbia University

Tassaneewan Laksanasopin Samiksha Nayak Archana Sridhara Owolabi Olowookere Fanxing Meng Shi Xie Paolo Cadinu Curtis Chin Natalie Chee Jiyoon Kim Sau Yin Chin

Advisor: Samuel Sia

Rwandan collaborators

Veronicah Mugisha Placidie Mugwaneza Elisaphane Munyazesa Sabin Nsanzimana

External collaborators

Jessica Justman (ICAP) Vincent Linder (OPKO) David Steinmiller (OPKO) Dr. Alex Rai (CUMC)

Funding

Columbia MSTP USAID Saving Lives at Birth Transition Grant