Infection Treatment in High Risk Patients: Moving Pathogen Detection to the Point-of-Care

Nam K. Tran, PhD, Davis, FACB
Pathology and Laboratory Medicine
University of California, Davis School of Medicine

Critical and Point-of-Care Testing Meeting
September 18, 2014
Infections and Sepsis

• Sepsis remains the leading cause of death in non-coronary intensive care units\(^1\) and claims more lives than bowel and breast cancer combined globally\(^2\).

• Mortality ranges from 28 to 50% in cases of severe sepsis, but approaches 70% in cases of septic shock.\(^1\)

• Early recognition and appropriate treatment of sepsis is associated with improved outcomes.\(^3\)

• Delays in appropriate therapy decreases survival 17.6-fold during severe sepsis.\(^4\)

Culture-Based Pathogen Detection

PERFORMANCE OF BLOOD CULTURE

• Theoretical limit of detection (LoD) of 1 CFU/mL (Reality = 3.18 – 3,000 CFU/mL)

• Detects most culturable microorganisms

• Median time to qualitative results: 10.4 hours

• Median time to speciation results: 26.4 hours

• Median time to drug sensitivity results: 43.7 hours

• Affected by antimicrobial drugs and improper sample volumes

High Risk Sepsis Patients

• High risk patients include those that are more susceptible to sepsis and associated complications.

• Burns patients are an example of a high-risk sepsis population due to loss of their primary barrier to the environment.1,2

• For example, 97% of burn patients with >20% total body surface area (TBSA) burns will acquire an infection over the course of their ICU stay.1

• Up to 75% of burn related mortality is associated with wound infections.2

• Burn sepsis definitions are not specific and may be masked by underlying conditions from chronic hypermetabolism and inflammation.1

Pathogen Detection in Burn Patients

Patient is a 20 year old man status post motor vehicle accident with 90% TBSA 3rd and 4th degree burns and C1 pedicle and C4 foraminal fracture.

Day 1
- **RC1:** Collected
 - *H. influenzae*
- **WC1:** Collected
- **RC2:** Collected
 - Mold observed during dressing change.
- **WC2:** A. fumigatus, Rhizopus sp.
- **RC3:** Collected
 - Amphi B soaks
- **WC3:** MSSA, *E. faecalis*, Strep. *viridans*
 - Added Linezolid

Day 2
- **RCB:** Collected
 - *P. aeruginosa*

Day 3
- **WC3:** Collected
 - Discontinued Linezolid, Meropenem; Added Vancomycin,

Day 4
- **BCB:** Collected
 - Added Voriconazol, Meropenem

Day 8
- **BCC:** Negative

Day 10
- **BCC:** Negative

Day 15
- **RC1:** Collected

Day 23
- **RC3:** Collected
 - *P. aeruginosa*

Day 27
- **BCB:** Collected
 - *P. aeruginosa*

Day 30
- **BCC:** Negative

Day 31
- **BCC:** Negative

Day 32
- **BCC:** Negative

Day 33
- **BCC:** Negative

Day 37
- **Patient expired**

Day 38
- **Patient expired**

Day 39
- **Patient expired**
Patient is a 20 year old man status post motor vehicle accident with 90% TBSA 3rd and 4th degree burns and C1 pedicle and C4 foraminal fracture.

Pathogen Detection in Burn Patients

Molecular Pathogen Detection

Polymerase Chain Reaction

- Growth-Independent Method
- Amplifies nucleic acids: $N = N_0 \cdot 2^n$
- Detects conserved regions including resistance genes
- Analytical Turnaround Time: 1 – 6 hours
- Limits of Detection: 10^0 to 10^2 CFU/mL
PCR-Based Pathogen Detection in Trauma, Emergency, and Burn Surgery Patients

• **Hypothesis:** Multiplex PCR rapidly identifies pathogen nucleic acids from whole blood and detects the presence of occult infections when blood culture is inhibited.

• **Design:** Single-site, prospective observational trial

• **Population:** 50 adult trauma, emergency, and burn surgery (≥20% TBSA) with suspected sepsis.

• **Method:** 1.5mL of whole blood collected with blood culture samples and tested by Real-Time PCR (SeptiFast).

SeptiFast Test Panel

<table>
<thead>
<tr>
<th>Gram Positive</th>
<th>Gram Negative</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNS¹</td>
<td>Acinetobacter baumannii</td>
<td>Aspergillus fumigatus</td>
</tr>
<tr>
<td>Enterococcus faecium</td>
<td>Enterobacter aerogenes/ cloacae⁴</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>E. coli</td>
<td>Candida glabrata</td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>Klebsiella pneumoniae/ oxytoca⁴</td>
<td>Candida krusei</td>
</tr>
<tr>
<td>Strep. pneumoniae</td>
<td>Proteus mirabilis</td>
<td>Candida parapsilosis</td>
</tr>
<tr>
<td>Strep. sp.²</td>
<td>Pseudomonas aeruginosa</td>
<td>Candida tropicalis</td>
</tr>
<tr>
<td>MRSA (mec A gene)³</td>
<td>Serratia marcescens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stentrophomonas maltophilia</td>
<td></td>
</tr>
</tbody>
</table>

1-Coagulase negative Staphylococcus aureus
2-Streptococcus agalactiae, pyogenes, viridans = Strep. Sp.
3-Separate test kit
4-No differentiation between these two subspecies
“SeptiFast” PCR Targets

Factor Essential for Methicillin-Resistance (Fem) A and B Regions

STAPHYLOCOCCUS AUREUS GENOME
NCTC 8325, Size: 2800 kb

16-23S ITS Primer (50):
GTTATTAWCTTGTAG (FP)
GTTATTAWCTTGTAGTGTT (RP)

CGAACACTAGCGATTATTTCCTTA (FP)
TTTCGAACACTAGCGATT (RP)

Probe Pairs (70):
CCGAGTGAATAAGAGTTTTAAA (anchor)
GCTTGAATTCTAAGAAATAATCG (sensor)

CTTGGTAAAAATCTTACTTACTTATCTAG (anchor)
AAGCAGAGTTTACTATGTAAATGAGCAT (sensor)

AGTGGTCAAAAGAACCACACAAGATTAATAA (anchor)
AGCTTATTAAAACACTCTTATTTAATCAGCGTTT (sensor)

Protein A Gene (spa)

16S - 23S Ribosomal Internal Transcribed Spacer Region

Chromosomal Cassette Recombinase (ccr)
S. aureus Open Reading Frame X (orfX) Region

Staphylococcal Chromosomal Cassette Region and Methicillin Resistance Gene (mecA)

PCR Testing in Burn Sepsis Patients

Patient is a 20 year old man status post motor vehicle accident with 90% TBSA 3rd and 4th degree burns and C1 pedicle and C4 foraminal fracture.

Day 1

Septic Shock
MAP: 40-50mmHg
Started 4 Vasopressors
Green exudate on wounds
Platelet: 88,000

BC_B: P. aeruginosa
PCRC: P. aeruginosa
BC_C: Negative

Added Posaconazole

PCR may have detected P. aeruginosa 38.7 hours earlier than culture, and could have identified an occult infection during antimicrobial therapy
ABA – MCTG
COMBAT CASUALTY GRANT:

“Rapid, Quantitative, PCR-Based Detection of Staphylococcus aureus in Burn Sepsis Patients”

PI: Nam K. Tran, PhD
NIH Clinical Trials Registration Number: NCT01140269
UCD IRB Approval Number: 200918586
USAMRMC HRPO Log Number: A-15774.0 (Core Protocol)
Study Model: Randomized Controlled Trial

RECRUITMENT

Inclusion Criteria
- Age \geq 18 years
- \geq 20% TBSA burns

Exclusion Criteria
- Age $<$ 18 years
- Unable to consent
- IV Antibiotic allergies
- Non-survivable injuries

BLOCK RANDOMIZATION (240 Patients)

CONTROL (120)
- Observational group
- No PCR testing
- Routine laboratory testing
- Standard of care treatment

EXPERIMENTAL (120)
- Treatment group
- PCR testing for *Staphylococcus aureus*
- Routine laboratory testing
- Standard of care treatment
- Quantitation of positive PCR results (blinded)
CURRENT PARTICIPATING SITES

- UCDMC
 Sacramento, CA
- Torrance Memorial
 Torrance, CA
- U. Cincinnati
 Cincinnati, OH
- U. Washington
 Seattle, WA
- Nathan Speare
 Philadelphia, PA
- U. Miami
 Miami, FL
Staphylococcus aureus

- Gram positive cocci found in groups.
- Coagulase and catalase positive
- Produces capsules (types 5 and 8 are common human pathogens)
- Expresses beta-lactamase to confer penicillin resistance
- Colonizes 10 to 20% of adults
- Methicillin resistant strains (MRSA) associated with higher mortality.

GeneXpert PCR Testing

Nasal

Wound

BC

Time (min) 2 60 - 70 RESULTS
GeneXpert *S. aureus* Gene Targets

- Factor Essential for Methicillin-Resistance (Fem) A and B Regions
- STAPHYLOCOCCUS AUREUS GENOME
 - NCTC 8325, Size: 2800 kb
 - OrfX Primer: GGATCAAAACGGCCTGCACA (FP)
 TTACTACGTGTTGAAGACGA (RP)
 - OrfX Probes: CCCGCGCGTAGTTACTGCGTTGTAAGACGTCGCCGCGGG
 CCCGCGCATAGTTACTGCGTTGTAAGACGTCGCCGCGGG
 CCCGCGCGTAGTTACTACGTGTTGAAGACGTCGCCGCGGG
- mecA Primers: GTCAAAAAATCATGAACCTCATTTACTATTATAG
 ATTTCAATATGTAAATTCTCCTCCACATCTC
 CAAATTTATCTCGTAATTACCTTCTGCC
 CTCTGCTTTATATTATAAAAATTCGCTG
 CACTTTATTTTTCACATGGAGTTTGAAC
- mecA Probes: AAACAAAGCAATAGAATCATCAGAT
 GAGATAGGCAATCGGTTCCTCAGAAGATGTA

PRELIMINARY DATA
2010-2012
Control vs. PCR Group Demographics

Abbreviations: BSI, bloodstream infections; ICU, intensive care unit; LOS, length of stay; MODS, multiple organ dysfunction score; TBSA, total body surface area.

- **TBSA (%)**
 - Control: 35%
 - PCR: 32%
 - $P = 0.747$

- **Age (years)**
 - Control: 42 years
 - PCR: 41 years
 - $P = 0.538$

- **ICU LOS (days)**
 - Control: 50 days
 - PCR: 52 days
 - $P = 0.506$

- **BSI (Frequency)**
 - Control: 1 case
 - PCR: 2 cases
 - $P = 0.418$

- **Admit MODS**
 - Control: 3 cases
 - PCR: 4 cases
 - $P = 0.575$

- **Vent Days**
 - Control: 15 days
 - PCR: 10 days
 - $P = 0.052$
Distribution of Men vs. Women Between Study Groups

![Bar graph showing the distribution of patients by gender and study group. The graph compares the number of male and female patients in the control and PCR groups. The x-axis represents gender (Male and Female), and the y-axis represents the number of patients. The control group has 21 patients, with 14 males and 7 females, and the PCR group has 18 patients, with 12 males and 6 females. The p-value is 0.555, indicating no significant difference in distribution.]
MRSA vs. MSSA Infections

Control (n = 21) PCR (n = 18)

P = 0.212
MRSA/MSSA Antibiotic Days Between Control vs. PCR Groups

“Non-vancomycin” = nafcillin or cefazolin
PCR Turnaround Time vs. Culture

<table>
<thead>
<tr>
<th></th>
<th>SSTI</th>
<th>BSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>3.178258065</td>
<td>32.5144</td>
</tr>
<tr>
<td>Culture</td>
<td>83.30322581</td>
<td>53.3768</td>
</tr>
</tbody>
</table>

Abbreviations: BSI, bloodstream infection; PCR, polymerase chain reaction; SSTI, skin and soft tissue infection
Proof of Concept: Serial Quantitative PCR Testing

History: Patient is a 40 year old man with 20% total body surface area burns to the face, head, neck, left upper back, bilateral hands, and lower left extremity from a house fire. Blood cultures, respiratory cultures, and wound cultures were collected on day 5 for clinical suspicion of burn sepsis (*American Burn Association Sepsis Trial*).

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0945</td>
<td>Vancomycin Started 750mg IV q8H</td>
<td></td>
</tr>
<tr>
<td>0934</td>
<td>WC report 2+ Gram Positive Cocci</td>
<td></td>
</tr>
<tr>
<td>1015</td>
<td>WC report S. aureus (MIC pending)</td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td>WC report MSSA</td>
<td></td>
</tr>
<tr>
<td>0900</td>
<td>Wound culture (WC) Collected PCR swab sample collected</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>PCR detects 1,029 CFU of MSSA from wound swab</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Mupirocin started on wounds</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>Wound culture (WC) Collected</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Mupirocin started on wounds</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>CFU of S. aureus</td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>CFU of MSSA</td>
<td></td>
</tr>
<tr>
<td>792</td>
<td>CFU of MSSA</td>
<td></td>
</tr>
</tbody>
</table>

PCR testing provided definitive results 4 days faster than culture. Quantitative PCR correlated with treatment efficacy.
Moving Rapid Pathogen Detection to the Point-of-Care
Evolution of Rapid Pathogen Detection Devices
Evolution of Rapid Pathogen Detection Devices
Evolution of Rapid Pathogen Detection Devices

CENTRAL LAB
Processing: Manual or semi-automated processing
Menu: Culturable pathogens
TAT: ~2-3 days
Cost: $118/set
Evolution of Rapid Pathogen Detection Devices

- **CENTRAL LAB**
 - Processing: Manual
 - Menu: 25-plex
 - TAT: <24 hours
 - Cost: $500/batch

- **TAT**:

- **PORTABILITY**:

[Image of bottles and a device]
Evolution of Rapid Pathogen Detection Devices

NEAR PATIENT
Processing: Auto
Menu: Singleplex
TAT: ~1-2 hours
Cost: $50/test
Evolution of Rapid Pathogen Detection Devices

BEDSIDE
- Processing: Auto
- Menu: Multiplex(?)
- TAT: ~1-2 hours
- Cost: ???

TAT

PORTABILITY
Challenges for Point-of-Care Rapid Pathogen Detection

- Rapid (<1 hour) identification of both pathogen and resistance profile (antimicrobial susceptibility).

- Miniaturization and automation of complex pre-analytical processing for molecular assays → CLIA waived device!

- Adequate analytical sensitivity and specificity. Limits of detection of < 100 CFU/mL to detect early sepsis.

- Environmental robustness for tests performed in non-hospital settings.

- Pathogen detection from minimally or unprocessed samples (e.g., whole blood).
The Bright Future of POC Rapid Pathogen Detection

T2 Magnetic Resonance (T2MR)

- Direct detection of bacterial and fungal pathogens in 1 hour
- No sample processing required
- Limits of detection < 1 CFU/mL

T2 Biosystems
The Bright Future of POC Rapid Pathogen Detection

Surface Enhanced Raman Spectroscopy (SERS)

- Direct detection of pathogens in <1 hour
- Potential to determine antimicrobial susceptibility
- Handheld platform
Conclusions

• Sepsis remains a significant health care problem and exhibiting substantial mortality and morbidity.

• High risk patients have increased susceptibility for sepsis and often have underlying conditions that mask the presence of infection.

• Current microbiological culture-based pathogen detection is unable to rapidly identify the pathogen causing sepsis.

• Rapid molecular pathogen detection techniques have proven to improve patient outcomes by accelerated targeted antimicrobial therapy, however, these devices remain mostly located in the central laboratory.

• Challenges with moving rapid pathogen detection to the point of care includes acceptable TAT, automation, complexity, and analytical performance.

• Future POC pathogen detection technologies will favor direct identification using innovative methods, may involve antimicrobial susceptibility testing, and provide analytical performance that is at least comparable to current methods.
ACKNOWLEDGEMENTS

TRAN LABORATORY
Zachary Godwin, BS
Amanda Steele, BS
Kelly Lima, BS
Erin Howell, BS (MS3)
Gregory Reynolds, BS (MS2)
Megan Howes

DATA COORDINATION CENTER
Mary Beth Lawless, RN, MS
Terese Curri, CCRP
Katrina Falwell, RN, MSN
Jefferson Lee
Silvia Hughes
Laurel Beckett, PhD (Biostatistics)

2014 EDMONDSON FELLOWS
Joseph Pansius
Ivelisse Dyson

BURN SURGERY
David Greenhalgh, MD, FACS
Tina Palmieri, MD, FACS

SUPPORT
USAMRMC (PCR Sepsis)
UCD “Med-Surg-Path” (BNP/NGAL)
UCD CTSC K30 MCRTP
NIH/NHLBI K12 Award
Shriners Hospitals for Children of Northern California (SHCNC)
QUESTIONS?