

Calcium Homeostasis and Bone Metabolism

Patti Jones, PhD
Professor of Pathology
UT Southwestern Medical Center
Director of Chemistry
Children's Medical Center Dallas

Presented by AACC and NACB

Learning objectives

- Discuss calcium homeostasis
- Describe hormonal control of calcium concentration, specifically vitamin D and parathyroid hormone
- Describe bone remodeling
- Assess markers of bone turnover
- Describe laboratory testing of Calcium, PTH and Vitamin D

Case study

- 11 year old female presented to ED with "hand spasms" and abdominal pain
- Initial Labs

	US units		International units	
Calcium	5.6	8 – 11 mg/dL	1.4	2 – 2.75 mmol/L
iCa	0.72	1.12 – 1.32 mmol/L	0.72	1.12 – 1.32 mmol/L
Mg ⁺⁺	1.5	1.7 – 2.4 mg/dL	0.62	0.7 – 0.99 mmol/L
Phos	8.3	3.4 – 5.4 mg/dL	2.68	1.10 – 1.74 mmol/L

Calcium

Calcium:

- Fifth most common element in the body (O2, C, H2, N2)
- Nearly all extracellular
- ~99% in hard tissues as hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$
- Serum concentrations well controlled involved in important processes:
 - Muscle contraction, coagulation, neural transmission, bone metabolism

Ca²⁺

Calcium in blood:

- ~ 50% in the form of ionized calcium (iCA) active form
- ~ 40% is protein bound (albumin 80%)
- ~10% complexed to small diffusible ligands (lactate, phosphate, citrate, bicarbonate)
- Acidosis increases iCA form, alkalosis decreases iCA

Systemic control of calcium balance

- Two hormones primarily responsible for calcium homeostasis
 - Parathyroid Hormone PTH
 - 1,25-dihydroxy-vitamin D

 Calcitonin – lowers serum calcium by stimulating bone accretion (suppressing osteoclast activity) – minor physiological role – thyroidectomy has no adverse affect on bone strength or density

Ca²⁺ Balance

Serum Calcium regulates activity of parathyroid glands

www.orthoteers.co m/.../images2/met ab3.jpg

PTH:

-up-regulates Ca mobilization from bone

-up-regulates Vit D conversion from 25-OH to 1,25-diOH in kidney

-increases Ca reabsorption in kidney -decreases Phos reabsorption (more Phos loss)

Hormonal control of calcium balance

- PTH: produced in response to low serum calcium; is suppressed when serum calcium is elevated
 - Increased mobilization of Ca from bone
 - Increased kidney reabsorption of Ca, decreased reabsorption of Phos
 - Increased kidney conversion of 25-OH to 1,25 diOH- Vitamin D
- 1,25-diOH D: formation regulated by PTH, indirectly by serum calcium
 - Increased Ca and Phos absorption from gut
 - Increased Ca mobilization from bone

Parathyroid hormone

- -Parathyroids secrete intact, 1-84; 7-84 molecule; 1-34 molecule produced from 1-84 molecule
- -All thought to have biological activity, (7-84 may lower serum calcium)
- Original assays against C-terminal
- Most of the "intact" assays crossreact to some extent with molecules besides the 1-84

Vitamin D metabolism

Vitamin D₂ and D₃

Vitamin D₂ (Ergocalciferol)

Vitamin D₃ (Cholecalciferol)

Vitamin D metabolism

in Clinical Chemistry

Case study

- 11 year old female presented to ED with "hand spasms" and abdominal pain
- Initial Labs

	US units		International units	
Calcium	5.6	8 – 11 mg/dL	1.4	2 – 2.75 mmol/L
iCa	0.72	1.12 – 1.32 mmol/L	0.72	1.12 – 1.32 mmol/L
Mg ⁺⁺	1.5	1.7 – 2.4 mg/dL	0.62	0.7 – 0.99 mmol/L
Phos	8.3	3.4 – 5.4 mg/dL	2.68	1.10 – 1.74 mmol/L

Hypocalcemia

- Hypoparathyroidism
 - Idiopathic, post surgery, hypomagnesemia,
 - low PTH
- PTH resistance (pseudohypoparathyroidism)
 - Increased PTH, hypocalcemia, hyperphosphatemia
- Non-parathyroid
 - Vitamin D deficiency
 - Malabsorption
 - Liver disease
 - Renal disease

Case study

- 11 year old female presented to ED with "hand spasms" and abdominal pain
- Initial Labs

	US units		International units	
Calcium	5.6	8 – 11 mg/dL	1.4	2 – 2.75 mmol/L
iCa	0.72	1.12 – 1.32 mmol/L	0.72	1.12 – 1.32 mmol/L
Mg ⁺⁺	1.5	1.7 – 2.4 mg/dL	0.62	0.7 – 0.99 mmol/L
Phos	8.3	3.4 – 5.4 mg/dL	2.68	1.10 – 1.74 mmol/L
PTH	57.5	1.3 – 6.8 pmol/L		
25-OH-Vit D	14	30 – 80 ng/mL		
1,25-diOH- D	42	15 – 75 pg/mL		

Case study - pseudohypoPTH

- 6 days in hospital receiving calcium carbonate prn and calcium gluconate IV, calcitriol 1 mcg po daily
- Labs

```
- Calcium 7.5 - 8.1 for 24 hrs (8 - 11 \text{ mg/dL})
```

- iCa trending up (1.07) (1.12 – 1.32 mmol/L)

- Phos 5.0 - 6.0 (3.3 - 5.4 mg/dL)

- PTH 50 - 80 (1.3 – 6.8 pmol/L)

- Vit D 4 - 14 (30 - 80 ng/mL)

- 1,25 - Vit D 22 - 45 (15 - 75 pg/mL)

Hypercalcemia

- Primary hyperparathyroidism (HPT)
 - Most common in outpatients

- Hypercalcemia of Malignancy (HCM)
 - Most common in inpatients

Hypercalcemia

- Primary hyperparathyroidism (HPT)
 - Parathyroid gland adenoma
 - High PTH, high Calcium, low phos, renal stones
- Secondary HPT
 - Response to hypocalcemia
 - Renal failure
 - Losing calcium into urine
 - High phosphate suppresses 1α -hydroxylase (less Ca absorption from gut), Ca complexes to phos
 - High PTH, normal to low serum calcium, high urine calcium

Hypercalcemia

- Hypercalcemia of Malignancy
 - Skeletal involvement
 - Bone resorption metastasis
 - No skeletal involvement
 - PTHrP PTH-related peptide
 - » protein produced in fetal development and by tumors (squamous cell, breast, lymphoma)
 - » mimics PTH action, binds to PTH receptors
 - Hematological malignancy (multiple myeloma)
 - Increased cytokines (IL, TNF)

Case - 2° hyperPTH due to renal failure

- 13 year old female with ESRD presents for dialysis
- Labs:

	US units		International units	
Creatinine	13.5	0.3 – 1.1 mg/dL	1193	27 – 97 mmol/L
Calcium	7.4	8 – 11 mg/dL	1.85	2 – 2.75 mmol/L
Phos	6.3	3.4 – 5.4 mg/dL	2.03	1.10 – 1.74 mmol/L
PTH	128.3	1.3 – 6.8 pmol/L		
25-OH-Vit D	36	30 – 80 ng/mL		

- Ordered: bone density scans, bone age determination
- Cases like this lead to renal osteodystrophy

Bone Metabolism

- Bone acts as a reservoir for calcium and phosphate
- Bone remodeling allows for release and uptake of calcium – thus one control of bone remodeling is calcium level
- Bone remodeling is a constant, not random process – always going on but <u>rate determined</u> <u>at multiple levels</u>
 - Hormone PTH, Vitamin D
 - Serum calcium levels
- Most of the adult skeleton is replaced ~ every 10 years (10-30% replaced per year)

Bone Remodeling Mechanism

Bone Remodeling Regulation

• Regulated **systemically** by:

Factor	Effect on osteoblast	Effect on osteoclast	Effect on bone
PTH	仓	仓	Variable
1,25 di-OH-D	仓	仓	Variable
IL-1/TNF	Û	仓	Bone loss
T3/T4	\Leftrightarrow	仓	Bone loss
Cortisol	Û	仓	Bone loss
Calcitonin	\Leftrightarrow	Û	Bone gain
Estrogen/ testosterone	仓	Û	Bone gain
Mechanical load	仓	Û	Bone gain
Growth hormone /IGF-1	仓	\Leftrightarrow	Bone gain

Bone Remodeling Regulation

- Regulated **locally** (at level of osteoclast / osteoblast) by:
 - Macrophage colony stimulating factor (m-CSF)
 - Receptor activator of nuclear factor kappa B ligand (RANKL)
 - Osteoprotegrin (OPG)

Assessing bone remodeling

Figure 5 - Schematic Representation of the Cellular and Skeletal Sources of Serum and/or Urinary Markers of Bone Formation and Bone Resorption (www.endotext.com Chapter 2, LJ Deftos MD,JD,LLM

Assessing Bone Formation

- Proposed tests for bone formation
 - BGP Bone gamma carboxyglutamic acid protein (osteocalcin, bone gla protein)
 - produced by osteoblasts, most incorporated into the new bone matrix
 - PICP C-terminal propeptide of type I procollagen
 - PINP N-terminal propeptide of type I procollagen
 - cleaved ends of newly synthesized procollagen molecules
 - BAP bone-specific alkaline phosphatase
 - activity increases at deposition of osteoid, as osteoblasts begin making new bone

Tests for bone formation

Analyte	Utility	-vantages
BAP and total Alk Phos	 ↑ - osteoporosis, osteomalacia, rickets, HyperPT, thryotoxicosis, Paget's, acromegaly, etc -Highest diagnostic sens & spec for Paget's 	+ stable molecule, easily measured -BAP needs Chromatography Electrophoresis
Osteocalcin	↑ - as above, ↓ -hypoPT, GH deficiency, estrogen replacement therapy	-5 minute half life, non-stable- increased in impaired renal function (cleared by glomerulus)
PICP PINP	±; type 1 collagen not only found in bone	-PINP at reference labs (RIA)

Assessing Bone Resorption

Proposed tests for bone resorption

- TRAP tartrate-resistant acid phosphatase
- BSP bone sialoprotein

- NTX N-terminal telopeptide cross-links of type I collagen
- CTX C-terminal telopeptide cross-links of type I collagen
- PYD pyridinoline
- DPD deoxypyridinoline
- ICTP C-terminal pyrodinoline cross-links

Fig. 2. Structure of type I collagen and cross-link degradation products.

o, Dpd; ●, Pyr.

Tests for bone resorption

Analyte	Utility	-vantages
TRAP	Not used much	-failure to distinguish osteoclastic TRAP from other TRAPs
BSP	Not proven	
NTX CTX	↑ In increased bone remodeling; measure response to therapy	+NTx - commercially available assay, can use serum
DPD PYD	DPD – most useful, appears to be from bone only	+DPD – commercially available

Utility of tests for bone remodeling

- No consistency between assays
 - No reliable synthetic standard
 - Follow treatment or disease progression must get all samples run at same lab
- Not readily available assays
 - Essentially all reference lab assays
 - Few analyzers have these assays
- Samples:
 - Except for alk phos, most markers have significant diurnal variation
 - Degradation products best measured in either early morning urine or 24 hr urine sample

Utility of tests for bone remodeling

- Primarily useful for monitoring response to therapy, especially for metabolic bone diseases
 - Osteoporosis
 - Uncoupling of bone turnover
 - Increased resorption and/or decreased formation
 - Especially in women after estrogen loss
 - Paget's Disease
 - Increased osteoclast activity and bone turnover
 - 1 alk phos, and collagen degradation products
 - Osteomalacia
 - Defective mineralization of osteoid in bone
 - Often related to defects in Vitamin D metabolism
- Baseline level at start of therapy monitor

Laboratory testing of Calcium

Total Calcium

- Measurement on most chemistry analyzers spectrophotometric
- Measured in heparinized plasma or serum
- Affected by serum protein concentration
- "Adjusted" Calcium for albumin concentration
 - Adj Ca = TCa (mg/dL) + 0.8(4 albumin[g/dL])
 - Below 4 g/dL: for every 1 g/dL albumin decrease, Ca decreases
 0.8 mg/dL
 - Above 4 g/dL: for every 1 g/dL albumin increase, Ca increases
 0.8 mg/dL

Laboratory testing of Calcium

- Free Calcium (ionized Calcium)
 - Better reflects Ca metabolism and status than
 Total
 - Biologically active and tightly regulated
 - Measured by ISE, generally whole blood sample, blood gas

Laboratory testing of Calcium

- Free Calcium (ionized Calcium)
 - Free calcium concentrations affected by pH
 - Acidic more iCa available
 - Basic less iCa available

- Some analyzers "correct" iCa to normal pH
 - Should NOT report

Laboratory testing of PTH

PTH

- Immunoassay, usually sandwich type, for intact
 PTH
- ALWAYS report with Ca level
- PTH stable at room temperature in EDTA
- Can't perform calcium on EDTA tube
- Useful for differential diagnosis of hypercalcemia and hypocalcemia

Laboratory testing of PTH

- PTH
 - Intra-operative PTH
 - Parathyroid adenoma excision
 - Baseline PTH remove gland,
 wait 5 minutes & re-measure PTH
 - Correct gland removed PTH will drop >50% in those 5 minutes (short half life!)
 - Rapid TAT is critical! patient on table

Laboratory testing of PTH

- PTH
 - Intra-operative PTH on fluid (saline)
 - Thyroidectomy, leaving parathyroid glands intact
 - Flush tissue with saline and send saline to lab for PTH
 - LDT!!!

Laboratory testing of Vitamin D

- Vitamin D
 - 25-OH-D main circulating form
 - best measurement for determining nutritional status and body stores
 - 1,25-diOH-D biologically active
 - differentiating HPT from HCM
 - D-dependent from D-resistant rickets
 - Monitoring D status in chronic renal failure
 - Assessing D therapy

Laboratory testing of Vitamin D

- Vitamin D
 - Serum sample
 - 25-OH-D immunoassay (RIA, EIA, ICMA)
 or LC-MS/MS (D2 and D3 and D3 epimer)
 - 1,25-diOH-D extraction, chromatography, RIA
 - Used to have population based reference intervals - Different intervals for summer and winter (or north and south!)

Vitamin D Reference Intervals

 If Vitamin D levels are low, PTH should rise to activate more to the bioactive form

- Measured Vitamin D
 and PTH in samples
- Determined concentration of Vitamin D at which PTH concentration goes up

Laboratory testing of Vitamin D

- Vitamin D
 - Changed to health based reference intervals
 - < 20 ng/mL deficient
 - 20 29 ng/mL insufficient
 - 30 80 ng/mL sufficient
 - > 80 ng/mL toxic
 - 2011 IOM report
 - Serum 25-OHD range 20 50 ng/mL
 - Problem? Not all D assays created equal
 - Same sample, 8 methods, results = 23 to 85 ng/mL

Summary

- Hormonal control of calcium homeostasis is via PTH and Vitamin D
- Bone formation and resorption processes both result in biochemical markers which are most useful for monitoring therapy for metabolic bone disorders
- Measurement of free calcium provides the most information on calcium status but has not replaced total calcium measurement
- In order to allow for more correct interpretation of PTH results, a calcium result should be provided with a PTH determination
- Vitamin D measurement is currently not standardized between assays

1. Which of the following sets of lab results is consistent with pseudohypoparathyroidism?

	PTH	Serum Calcium	Serum phosphate	Urine calcium
Α	↑	↑	N to ↓	↑
В	↑	Normal	Normal	\downarrow
С	↑	\	↑	\downarrow
D	\	\	↑	\downarrow

2. Serum calcium concentration:

- a. Directly effects activation of 25-OH-Vitamin D to 1,25 diOH-D
- b. Directly causes suppression or induction of PTH production
- c. Is independent of albumin concentration
- d. Provides more useful information if only total calcium is measured rather than total and ionized

- Markers of bone resorption include:
 - a. Osteocalcin, osteoprotegrin and N-telopeptide crosslinks
 - N- telopeptide crosslinks, tartrate –resistant acid phosphatase, and deoxypyridinoline
 - c. Osteocalcin, C-terminal propeptide of type 1 collagen and bone alkaline phosphatase
 - d. C-terminal telopeptide crosslinks, bone sialoprotein and bone alkaline phosphatase

- 4. 25-OH-Vitamin D:
 - a. Has the hydroxyl group added to the 25 position in the liver
 - b. Is usually measured by immunoassays that differentiate between D2 and D3 forms
 - c. Gives comparable results with all methods and thus can use one reference interval
 - d. Is the biologically active form

Answers

- 1. C
- 2. B
- 3. B
- 4. A

