

Laboratory calculations I

Patti Jones, PhD Professor of Pathology UT Southwestern Medical Center Director of Chemistry Children's Medical Center Dallas

Presented by AACC and NACB

Learning Objectives

- Understand and be able to use the following types of calculations
 - Reference interval
 - How to work up Proficiency Testing results
 - Sensitivity/specificity
 - ROC curve
 - Student t test
 - Volume of distribution

Case 1: Reference intervals

- Validating a reference interval?
- Transferring a reference interval?
- Establishing a reference interval
 - On a test with well-defined inclusion/exclusion
 criteria? a priori sampling
 - On a new analyte? a posteriori sampling

Case 1: Reference intervals

- Validating a reference interval?
 - 20 60 reference individuals
- Transferring a reference interval?
 - Method comparison and bias evaluation
- Establishing a reference interval
 - On a test with well-defined inclusion/exclusion criteria? - a priori sampling – 120 healthy individuals to get 90% C.I. at 95th percentile
 - On a new analyte? a posteriori sampling as many as you can analyze

Case 1: Reference intervals

• Establishing a reference interval

Look at data distribution! – why?

Reference intervals

- Chloride on CAVH fluid
 - -N = 56
 - -Mean = 101
 - Median 100
 - SD = 7

Reference intervals

- Chloride on CAVH fluid
 - -N = 56
 - -Mean = 101
 - Median 100
 - SD = 7

chloride (mmol/L)

Reference intervals

Normally distributed data: use parametric statistics

mean ± 2SD to get 95%

NOT normally distributed data: use **non-parametric statistics**

 2.5^{th} and 97.5^{th} percentiles

Case 1: reference interval for 3-OH-C16

Frequency histogram

Case 1: reference interval for 3-OH-C16

- Non-parametric analysis:
 - Rank the values in order, lowest to highest, and number them (1 = lowest value)
 - Determine 2.5th percentile and 97.5th percentile value
 - $2.5^{\text{th}} = 0.025 (n+1)$ $97.5^{\text{th}} = 0.975(n+1)$

3-OH-C16 reference interval

- N = 197
- Range = 0.2 1.5
- Mean = 0.53; median = 0.50
- Non-parametric 95% reference interval:
 2.5th = 0.025(198) = 4.95 = 5th value
 - 97.5th = 0.975(198) = 193rd value

0.3 – 1.2

3-OH-C16 reference interval

- Non-parametric 95% reference interval:
 - 2.5th = 0.025(198) = 4.95 = 5th value
 - 97.5th = 0.975(198) = 193rd value

0.3 – 1.2

Gaussian 95%
 reference interval
 0.05 – 1.01

Transferring a reference interval

Y = 1.063X + 9.1 $r^2 = 0.9998$

Average difference = +19 mg/dL

Adjusted reference intervals Notified physicians

Case 2: Proficiency Testing workup

- PT challenges are **opportunities**
- PT results reported against "peer group"

Free T4		CHM-11							
Method	No of labs	mean	SD	CV					
A	229	3.23	0.24	7.3					
В	22	1.67	0.13	7.7					
С	278	3.12	0.16	5.1					
D	225	2.82	0.17	6.1					
E	178	4.07	0.19	4.6					
F	338	3.79	0.12	3.2					
G	55	6.91	0.06	0.9					

Case 2: Proficiency testing

ONIGHAL										•			
Test		E	valuation a	nd Comp	arative	Method	d Statistics			Plot of the Relative Distance of Your Results from			
Unit of Measure		Your			No. of	I	Limits of A	cceptabili	ty Your	Target as Percentages of allowed Deviation			
Peer Group	Specimen	Result	Mean	S.D. Labs		S.D.I	S.D.I Lower Upper		Grade	Survey -100Mean	+100		
Potassium, serum	CHM-11	2.6	2.61	0.03	553	-0.4	2.1	3.2	Acceptable				
mmol/L	CHM-12	4.3	4.30	0.05	558	+0.1	3.7	4.8	Acceptable	C-C 2012			
ION SELECT ELECT DIL	CHM-13	6.4	6.41	0.07	558	-0.1	5.9	7.0	Acceptable	C-B 2012			
SIEMENS DIMENSION VIST	CHM-14	4.3	4.30	0.05	557	+0.1	3.7	4.8	Acceptable	C-A 2012			
	CHM-15	5.8	5.90	0.06	549	-1.7	5.4	6.5	Acceptable	-100-20 -60 -40 -20 0 20 40	50 BO 100		
Protein, total, serum	CHM-11	4.8	4.75	0.07	561	+0.7	4.2	5.3	Acceptable				
g/dL	CHM-12	4.7	4.66	0.08	562	+0.5	4.1	5.2	Acceptable	C-C 2012			
BIURET	CHM-13	2.7	2.64	0.06	560	+1.0	2.3	3.0	Acceptable	C-B 2012			
SIEMENS DIMENSION VIST	CHM-14	4.6	4.66	0.07	558	-0.7	4.1	5.2	Acceptable	C-A 2012			
	CHM-15	3.4	3.43	0.07	564	-0.5	3.0	3.8	Acceptable	-100-20 -50 -40 -20 0 20 40	50 BO 10D		
Sodium carum	CHM-11	136	136.4	1.6	554	-0.3	132	141	Acceptable				

Ideally: sample results dispersed on both sides of mean and not far from mean

Report gives "SDI" – Standard Deviation Index – measure of the difference of your result from the group mean compared to group SD

SDI = (your result – group mean) ÷ group SD

SDI = (4.8 - 4.75)/0.07 = 0.05/0.07 = +0.7

Case 2: PT work-up

Albumin	CHM-11	2.8	2.92	0.08	560	-1.4	2.6	3.3	Acceptable	
g/dL	CHM-12	2.7	2.87	0.08	559	-2.2	2.5	3.2	Acceptable	C-C 2012
DYE BINDING-BCP	CHM-13	1.6	1.72	0.06	557	-2.3	1.5	1.9	Acceptable	C-8 2012
SIEMENS DIMENSION VIST	CHM-14	2.8	2.87	0.07	557	-0.9	2.5	3.2	Acceptable	C-A 2012
	CHM-15	2.0	2.18	0.06	561	-2.7	1.9	2.4	Acceptable	-100-20 -50 -40 -20 0 20 40 50 20 100
									-	

This should trigger an investigation.

- method was running along the mean previously
- SD1 approaching 2.5

SDI > ± 2.5 , only 0.6% probability that result will fall within the peer group

Case 2: PT work-up

Albumin	CHM-11	2.8	2.92	0.08	560	-1.4	2.6	3.3	Acceptable	
g/dL	CHM-12	2.7	2.87	0.08	559	-2.2	2.5	3.2	Acceptable	C-C 2012
DYE BINDING-BCP	CHM-13	1.6	1.72	0.06	557	-2.3	1.5	1.9	Acceptable	C-8 2012
SIEMENS DIMENSION VIST	CHM-14	2.8	2.87	0.07	557	-0.9	2.5	3.2	Acceptable	C-A 2012
	CHM-15	2.0	2.18	0.06	561	-2.7	1.9	2.4	Acceptable	-100-80 -50 -40 -20 0 20 40 50 80 100
									-	

Go back and investigate:

- QC any shifts of changes in QC values
- Reagent lots change in lot number of reagents?
- Calibrations when was method last calibrated how did the calibration look
- Instrument maintenance was this done or does it need to be done if done, did it effect QC
- How the PT samples were handled

A single outlying result on PT could be operator;

All PT challenges – systemic issue, i.e. lot number

Case 2: PT failure

onionin												
Test		E	valuation a	nd Comp	arative	Method	Statistics			Plot of the Relative Distance of Your Results from		
Unit of Measure		Your	Your No. of Limits of Acceptability Your					v Your	Target as Percentages of allowed Deviation			
Peer Group	Specimen	Result	Mean	\$.D.	Labs	S.D.I	Lower	Upper	Grade	Survey	-100Mean+100	
Urea Nitrogen	CHM-11	36.0	37.97	1.26	561	-1.6	34.5	41.4	Acceptable			
mg/dL	CHM-12	21.0	23.73	0.85	562	-3.2	21.5	25.9	Unacceptable	C-C 2012	2	
UREASE WITH GLDH	CHM-13	11.0	11.52	0.56	566	-0.9	9.5	13.6	Acceptable	C-B 2012		
SIEMENS DIMENSION VIST	CHM-14	23.0	23.70	0.84	563	-0.8	21.5	25.9	Acceptable	C-A 2012		
	CHM-15	13.0	13.57	0.59	565	-1.0	11.5	15.6	Acceptable		-100-20 -20 -40 -20 0 20 40 50 20 100 x: Result is outside the acceptable limits	

Go back and investigate:

- QC any shifts of changes in QC values
- Reagent lots change in lot number of reagents?
- Calibrations when was method last calibrated how did the calibration look
- Instrument maintenance was this done or does it need to be done if done, did it effect QC
- How the PT samples were handled

A single outlying result on PT could be:

operator error/mishandling of specimen

typo putting in results

something you never figure out (instrument short-sampled that test?)

Case 3: Clinical validity/utility sensitivity/specificity/predictive values

• **Specificity:** the frequency of a negative test when no disease is present

TN Spec. = _____ X 100 = (%) TN + FP

• Sensitivity: the frequency of a positive test when disease is present, or ability of test to detect disease

Case 3: sensitivity/specificity Spec. = $\frac{TN}{TN + FP}$ X 100 = (%) Sens. = $\frac{TP}{TP + FN}$ X 100 = (%) TP + FN

3-OHFAs data – good test for diagnosing LCHAD and SCHAD? Tested 197 patients

	SCHAD		LCHAD						
	SCHAD	No SCHAD		LCHAD	No LCHAD				
Postive	6 (TP)	15 (FP)	Positive	8 (TP)	0 (FP)				
Negative	0 (FN)	182 (TN)	Negative	0 (FN)	197 (TN)				

Spec for SCHAD = 182/197 X100 = 92.4%

Spec for LCHAD = 197/197 X100 = 100%

Sens for SCHAD = 6/6 X100 = 100%

Sens for LCHAD = 8/8 X100 = 100%

Case 3: clinical/diagnostic utility

• **Positive predictive value (PPV)** – predictive value of a positive test

For SCHAD: 6/21 X 100 = 28.6% For LCHAD: 8/8 X 100 = 100%

• Negative predictive value (NPV) – predictive value of a negative test

 $NPV = \frac{TN}{TN + FN} X 100 = \%$

For SCHAD: 199/199 X100 = 100% For LCHAD: 197/197 X100 = 100% test good for ruling out both disorders

Case 4: ROC curves

- Graphical way to present sensitivity and specificity data, also gives you:
 - PPV, NPV
 - +LR, -LR likelihood a pos test will be seen in a patient with the disease compared to a patient without the disease
 - \uparrow +LR the better the test is for diagnosing disease
 - \uparrow -LR the better the test is at ruling out the disease
- Sensitivity and specificity can be considered reciprocals

Case 4: ROC curves

AUC = 1.00 perfect test 100% sensitive and specific

AUC = 0.500 test is no better than flipping a coin

False positive rate

To set up a ROC curve

 For each data point, assign a 1 (disorder present) or a 0, (disorder absent)

ROC curves - LCHAD

AUC = 1.000

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
≥0.2	100.00	0.00	3.9		1.00	
>0.2	100.00	1.52	4.0	100.0	1.02	0.00
>0.3	100.00	18.78	4.8	100.0	1.23	0.00
>0.4	100.00	47.72	7.2	100.0	1.91	0.00
>0.5	100.00	68.02	11.3	100.0	3.13	0.00
>0.6	100.00	79.19	16.3	100.0	4.80	0.00
>0.7	100.00	84.77	21.1	100.0	6.57	0.00
>0.8	100.00	89.34	27.6	100.0	9.38	0.00
>0.9	100.00	93.40	38.1	100.0	15.15	0.00
>1	100.00	94.92	44.4	100.0	19.70	0.00
>1.1	100.00	96.45	53.3	100.0	28.14	0.00
>1.2	100.00	97.97	66.7	100.0	49.25	0.00
>1.4	100.00	98.98	80.0	100.0	98.50	0.00
>1.5	100.00	100.00	100.0	100.0		0.00
>2.7	75.00	100.00	100.0	99.0		0.25
>3.4	62.50	100.00	100.0	98.5		0.37
>6	50.00	100.00	100.0	98.0		0.50
>6.3	37.50	100.00	100.0	97.5		0.62
>7.2	25.00	100.00	100.0	97.0		0.75
>21.3	12.50	100.00	100.0	96.6		0.88
>25.9	0.00	100.00		96.1		1.00

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
≥0.2	100.00	0.00	2.9		1.00	
>0.2	100.00	1.51	3.0	100.0	1.02	0.00
>0.3	100.00	6.53	3.1	100.0	1.07	0.00
>0.4	100.00	15.08	3.4	100.0	1.18	0.00
>0.5	100.00	23.12	3.8	100.0	1.30	0.00
>0.6	100.00	30.15	4.1	100.0	1.43	0.00
>0.7	100.00	35.68	4.5	100.0	1.55	0.00
>0.8	100.00	41.21	4.9	100.0	1.70	0.00
>0.9	100.00	46.23	5.3	100.0	1.86	0.00
>1	100.00	53.27	6.1	100.0	2.14	0.00
>1.1	100.00	55.78	6.4	100.0	2.26	0.00
>1.2	100.00	59.80	7.0	100.0	2.49	0.00
>1.3	100.00	63.32	7.6	100.0	2.73	0.00
>1.4	100.00	66.33	8.2	100.0	2.97	0.00
>1.5	100.00	68.84	8.8	100.0	3.21	0.00
>1.6	100.00	71.36	9.5	100.0	3.49	0.00
>1.7	100.00	72.36	9.8	100.0	3.62	0.00
>1.8	100.00	72.86	10.0	100.0	3.69	0.00
>1.9	100.00	73.37	10.2	100.0	3.75	0.00
>2	100.00	74.37	10.5	100.0	3.90	0.00
>2.1	100.00	76.38	11.3	100.0	4.23	0.00
>2.2	100.00	76.88	11.5	100.0	4.33	0.00
>2.3	100.00	79.40	12.8	100.0	4.85	0.00
>2.4	100.00	80.40	13.3	100.0	5.10	0.00
>2.5	100.00	81.41	14.0	100.0	5.38	0.00

ROC curve: SCHAD

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
>2.6	100.00	82.41	14.6	100.0	5.69	0.00
>2.9	100.00	83.92	15.8	100.0	6.22	0.00
>3	100.00	84.92	16.7	100.0	6.63	0.00
>3.2	100.00	85.43	17.1	100.0	6.86	0.00
>3.3	100.00	85.93	17.6	100.0	7.11	0.00
>3.4	100.00	86.93	18.8	100.0	7.65	0.00
>3.7	100.00	87.44	19.4	100.0	7.96	0.00
>3.8	100.00	88.44	20.7	100.0	8.65	0.00
>3.9	100.00	89.45	22.2	100.0	9.48	0.00
>4.1	100.00	90.45	24.0	100.0	10.47	0.00
>4.2	100.00	90.95	25.0	100.0	11.06	0.00
>4.3	100.00	91.96	27.3	100.0	12.44	0.00
>4.7	100.00	92.46	28.6	100.0	13.27	0.00
>4.8	83.33	92.46	25.0	99.5	11.06	0.18
>5.2	83.33	92.96	26.3	99.5	11.85	0.18
>5.3	83.33	93.47	27.8	99.5	12.76	0.18
>5.5	83.33	94.47	31.2	99.5	15.08	0.18
>5.8	83.33	94.97	33.3	99.5	16.58	0.18
>6.5	83.33	95.48	35.7	99.5	18.43	0.17
>6.6	83.33	95.98	38.5	99.5	20.73	0.17
>6.8	83.33	96.48	41.7	99.5	23.69	0.17
>7	83.33	97.49	50.0	99.5	33.17	0.17
>7.2	83.33	97.99	55.6	99.5	41.46	0.17
>8.2	83.33	98.49	62.5	99.5	55.28	0.17
>8.5	50.00	98.49	50.0	98.5	33.17	0.51
>8.8	50.00	98.99	60.0	98.5	49.75	0.51
>11.9	33.33	100.00	100.0	98.0		0.67
>29.4	16.67	100.00	100.0	97.5		0.83
>54.4	0.00	100.00		97.1		1 00

Comparing ROC curves

If comparing a sample with the population from which it was selected:

$$t = \frac{\overline{x} - \mu}{s / \sqrt{N}}$$

Or, if comparing two samples:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

If comparing a sample with the population from which it was selected:

$$t = \frac{\overline{x} - \mu}{s / \sqrt{N}}$$

Average age of attendees at a conference is 32 The ages of the 10 attendees in the front row are 35, 37, 40, 30, 34, 35, 38, 32, 34 and 39. Are older attendees more likely to sit on the front row?

t =
$$(35.4 - 32) \div (3.13/\sqrt{10})$$

Mean = 35.4 S = 3.13 9 degrees of freedom

 $= 3.4 \div (3.13/3.16)$

= 3.4/0.99 = **3.4243**

If comparing a sample with the population from which it was selected:

 $t = \frac{\overline{x} - \mu}{s / \sqrt{N}}$

t = **3.4243** 9 degrees of freedom (N - 1)

Older attendees are more likely to sit on the front row.

P = 0.0075

	1-tail: 0.25	0.1	0.05	0.025	0.01	0.005	0.001
d.f.	2-tail: 0.50	0.2	0.1	0.05	0.02	0.01	0.002
1	1.000	3.078	6.314	12.706	31.821	63.657	318.309
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.215
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
> 9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385

Or, if comparing two samples:

$$t = \frac{\overline{X_1 - X_2}}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

Measured 8 controls yesterday: Mean = 8.7 S = 1.42

Measured 10 controls today: Mean = 7.9 S = 0.86

Is there a significant bias between the two days?

Or, if comparing two samples:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

 $\sqrt{(1.42)^2/8} + (0.79)^2/10$

= √0.252 + 0.062

= 0.56

Measured 8 controls yesterday: Mean = 8.7 S = 1.42

Measured 10 controls today: Mean = 7.9 S = 0.86

 $t = (8.7 - 8.0) \div 0.56$

= 0.7/ 0.56

= 1.25

		1-tail: 0.25	0.1	0.05	0.025	0.01	0.005	0.001
	d.f.	2-tail: 0.50	0.2	0.1	0.05	0.02	0.01	0.002
	1	1.000	3.078	6.314	12.706	31.821	63.657	318.309
	2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
	3	0.765	1.638	2.353	3.182	4.541	5.841	10.215
	4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
	5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
	6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
	7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
	8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
	9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
4.05	10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
t = 1.25	11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
	12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
16 degrees of freedom	13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
	14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
$(N_1 + N_2 - 2)$	15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
	> 16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
	17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
	18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
	19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
	20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
	21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
no significant bias between the 2 days	22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
	23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
	24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
	25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
	26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
D 04052	27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
P = 0.1952	28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
	29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
	30	0.683	1.310	1.697	2.042	2.457	2.750	3.385

Volume of Distribution (V_d)

 The Volume of Distribution (V_d) is the amount of blood, per Kg body weight, necessary to contain all of the body burden of drug at equilibrium concentration.

 $Plasma \ Concentration = \frac{Total \ Body \ Stores}{Volume \ of \ Distribution}$

Interpreting V_d

- Drugs with low V_d are contained mostly in the plasma, because . . .
 - They are highly water soluble (plasma water content is higher than tissues), or
 - They are highly protein bound (which prevents them from freely diffusing into tissues
- Drugs with high V_d are mostly in tissues, and plasma levels may not reflect body burden

Example of V_d calculation

A 70 Kg man takes a 5 mg dose of phenobarbital ($V_d = 1.0 L/Kg$). What is the *maximum* plasma phenobarbital concentration you can expect?

Plasma concentration = total body stores ÷ volume of distribution

 $= 0.07 \text{ mg/Kg} \div 1.0 \text{ L/Kg}$

= 0.07mg/L = **70 μg/L**

Example of V_d calculation

A 55 Kg woman has a plasma theophylline ($V_d = 0.5 L/Kg$) concentration of 15 μ g/L. What is her total body burden of theophylline?

Plasma concentration = total body stores ÷ volume of distribution

15 μ g/L = (concentration/55 Kg) \div 0.5 L/Kg

 $(15 \ \mu g/L)(0.5 \ Kg/L) = concentration/55 \ Kg$

7.5 μ g/Kg = concentration/55 Kg

 $(7.5 \ \mu g/Kg)(55 \ Kg) = concentration$

