Professional
 Practice
 in Clinical Chemistry

Laboratory calculations I

Patti Jones, PhD
Professor of Pathology
UT Southwestern Medical Center
Director of Chemistry
Children's Medical Center Dallas

Presented by AACC and NACB

Learning Objectives

- Understand and be able to use the following types of calculations
- Reference interval
- How to work up Proficiency Testing results
- Sensitivity/specificity
- ROC curve
- Student t test
- Volume of distribution

Case 1: Reference intervals

- Validating a reference interval?
- Transferring a reference interval?
- Establishing a reference interval
- On a test with well-defined inclusion/exclusion criteria? - a priori sampling
- On a new analyte? - a posteriori sampling

Case 1: Reference intervals

- Validating a reference interval?
- 20 - 60 reference individuals
- Transferring a reference interval?
- Method comparison and bias evaluation
- Establishing a reference interval
- On a test with well-defined inclusion/exclusion criteria? - a priori sampling - 120 healthy individuals to get 90\% C.I. at 95 ${ }^{\text {th }}$ percentile
- On a new analyte? - a posteriori sampling - as many as you can analyze

Case 1: Reference intervals

- Establishing a reference interval
- Look at data distribution! - why?

Reference intervals

- Chloride on CAVH fluid
$-N=56$
- Mean = 101
- Median 100
$-\mathrm{SD}=7$

Reference intervals

- Chloride on CAVH fluid
$-\mathrm{N}=56$
- Mean = 101
- Median 100
$-\mathrm{SD}=7$

Reference intervals

Normally distributed data:
use parametric statistics
mean ± 2 SD to get 95\%

NOT normally distributed data: use non-parametric statistics
$2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles

Case 1: reference interval for 3-OH-C16

Frequency histogram

Normal plot

Case 1: reference interval for 3-OH-C16

- Non-parametric analysis:
- Rank the values in order, lowest to highest, and number them (1 = lowest value)
- Determine $2.5^{\text {th }}$ percentile and $97.5^{\text {th }}$ percentile value
- $2.5^{\text {th }}=0.025(n+1)$

$$
97.5^{\mathrm{th}}=0.975(\mathrm{n}+1)
$$

3-OH-C16 reference interval

- $N=197$
- Range $=0.2-1.5$
- Mean $=0.53 ;$ median $=0.50$
- Non-parametric 95\% reference interval:
$-2.5^{\text {th }}=0.025(198)=4.95=5^{\text {th }}$ value
$-97.5^{\text {th }}=0.975(198)=193^{\text {rd }}$ value

$$
0.3-1.2
$$

3-OH-C16 reference interval

- Non-parametric 95\% reference interval:
$-2.5^{\text {th }}=0.025(198)=4.95=5^{\text {th }}$ value
$-97.5^{\text {th }}=0.975(198)=193^{\text {rd }}$ value

$$
0.3-1.2
$$

- Gaussian 95\% reference interval

$$
0.05-1.01
$$

Transferring a reference interval

$$
\begin{aligned}
& Y=1.063 X+9.1 \\
& r^{2}=0.9998
\end{aligned}
$$

Average difference $=+19 \mathrm{mg} / \mathrm{dL}$

Adjusted reference intervals Notified physicians

Case 2: Proficiency Testing workup

- PT challenges are opportunities
- PT results reported against "peer group"

Free T4		CHM-11		
Method	No of labs	mean	SD	CV
A	229	3.23	0.24	7.3
B	22	1.67	0.13	7.7
C	278	3.12	0.16	5.1
D	225	2.82	0.17	6.1
E	178	4.07	0.19	4.6
F	338	3.79	0.12	3.2
G	55	6.91	0.06	0.9

Case 2: Proficiency testing

Ideally: sample results dispersed on both sides of mean and not far from mean
Report gives "SDI" - Standard Deviation Index - measure of the difference of your result from the group mean compared to group SD

$$
\begin{aligned}
& \text { SDI }=(\text { your result }- \text { group mean }) \div \text { group SD } \\
& \text { SDI }=(4.8-4.75) / 0.07=0.05 / 0.07=+0.7
\end{aligned}
$$

Case 2: PT work-up

This should trigger an investigation.

- method was running along the mean previously
- SD1 approaching 2.5

SDI $> \pm 2.5$, only 0.6% probability that result will fall within the peer group

Professional
Practice
in Clinical Chemistry

Case 2: PT work-up

Go back and investigate:

- QC - any shifts of changes in QC values
- Reagent lots - change in lot number of reagents?
- Calibrations - when was method last calibrated - how did the calibration look
- Instrument maintenance - was this done or does it need to be done if done, did it effect QC
- How the PT samples were handled

A single outlying result on PT could be operator;
All PT challenges - systemic issue, i.e. lot number

Case 2: PT failure

Go back and investigate:

- QC - any shifts of changes in QC values
- Reagent lots - change in lot number of reagents?
- Calibrations - when was method last calibrated - how did the calibration look
- Instrument maintenance - was this done or does it need to be done
if done, did it effect QC
- How the PT samples were handled

A single outlying result on PT could be: operator error/mishandling of specimen
typo putting in results
something you never figure out (instrument short-sampled that test?)
Professional
Practice
in Clinical Chemistry

Case 3: Clinical validity/utility sensitivity/specificity/predictive values

- Specificity: the frequency of a negative test when no disease is present
Spec. $=\frac{T N}{T N+F P} \times 100=$
- Sensitivity: the frequency of a positive test when disease is present, or ability of test to detect disease

$$
\text { Sens. }=\frac{T P}{T P+F N} \times 100=\quad(\%)
$$

Case 3: sensitivity/specificity

3-OHFAs data - good test for diagnosing LCHAD and SCHAD? Tested 197 patients

SCHAD			LCHAD		
	SCHAD	No SCHAD		LCHAD	No LCHAD
Postive	$6(T P)$	$15(F P)$	Positive	8 (TP)	$0($ FP)
Negative	$0(F N)$	$182(T N)$	Negative	$0(F N)$	197 (TN)

Spec for SCHAD $=182 / 197$ X100 $=92.4 \%$
Sens for SCHAD $=6 / 6$ X100 $=100 \%$

Spec for LCHAD $=197 / 197$ X100 $=100 \%$
Sens for LCHAD $=8 / 8 \times 100=100 \%$

Case 3: clinical/diagnostic utility

- Positive predictive value (PPV) - predictive value of a positive test

$$
P P V=\frac{T P}{T P+F P} \times 100=\%
$$

For SCHAD: $6 / 21 \times 100=28.6 \%$
For LCHAD: $8 / 8 \times 100=100 \%$

- Negative predictive value (NPV) - predictive value of a negative test
$N P V=\frac{T N}{T N+F N} \times 100=\quad \%$

For SCHAD: $199 / 199 \times 100=100 \%$
For LCHAD: 197/197 X100 = 100\%
test good for ruling out both disorders
Professional

Case 4: ROC curves

- Graphical way to present sensitivity and specificity data, also gives you:
- PPV, NPV
$-+L R,-L R-$ likelihood a pos test will be seen in a patient with the disease compared to a patient without the disease
- $\uparrow+L R$ - the better the test is for diagnosing disease
- \uparrow-LR - the better the test is at ruling out the disease
- Sensitivity and specificity can be considered reciprocals

Case 4: ROC curves

$$
\begin{aligned}
& \text { AUC }=1.00 \\
& \text { perfect test } \\
& 100 \% \text { sensitive and specific }
\end{aligned}
$$

AUC $=0.500$
test is no better than
flipping a coin

False positive rate
To set up a ROC curve

- For each data point, assign a 1 (disorder present) or a 0, (disorder absent)

ROC curves - LCHAD

AUC $=1.000$

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
≥ 0.2	100.00	0.00	3.9		1.00	
>0.2	100.00	1.52	4.0	100.0	1.02	0.00
>0.3	100.00	18.78	4.8	100.0	1.23	0.00
>0.4	100.00	47.72	7.2	100.0	1.91	0.00
>0.5	100.00	68.02	11.3	100.0	3.13	0.00
>0.6	100.00	79.19	16.3	100.0	4.80	0.00
>0.7	100.00	84.77	21.1	100.0	6.57	0.00
>0.8	100.00	89.34	27.6	100.0	9.38	0.00
>0.9	100.00	93.40	38.1	100.0	15.15	0.00
>1	100.00	94.92	44.4	100.0	19.70	0.00
>1.1	100.00	96.45	53.3	100.0	28.14	0.00
>1.2	100.00	97.97	66.7	100.0	49.25	0.00
>1.4	100.00	98.98	80.0	100.0	98.50	0.00
>1.5	100.00	100.00	100.0	100.0		0.00
>2.7	75.00	100.00	100.0	99.0		0.25
>3.4	62.50	100.00	100.0	98.5		0.37
>6	50.00	100.00	100.0	98.0		0.50
>6.3	37.50	100.00	100.0	97.5		0.62
>7.2	25.00	100.00	100.0	97.0		0.75
>21.3	12.50	100.00	100.0	96.6		0.88
>25.9	0.00	100.00		96.1		1.00

ROC curve: SCHAD

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
$\boldsymbol{> 2 . 6}$	100.00	82.41	14.6	100.0	5.69	0.00
>2.9	100.00	83.92	15.8	100.0	6.22	0.00
>3	100.00	84.92	16.7	100.0	6.63	0.00
>3.2	100.00	85.43	17.1	100.0	6.86	0.00
>3.3	100.00	85.93	17.6	100.0	7.11	0.00
>3.4	100.00	86.93	18.8	100.0	7.65	0.00
>3.7	100.00	87.44	19.4	100.0	7.96	0.00
>3.8	100.00	88.44	20.7	100.0	8.65	0.00
>3.9	100.00	89.45	22.2	100.0	9.48	0.00
>4.1	100.00	90.45	24.0	100.0	10.47	0.00
>4.2	100.00	90.95	25.0	100.0	11.06	0.00
>4.3	100.00	91.96	27.3	100.0	12.44	0.00
>4.7	100.00	92.46	28.6	100.0	13.27	0.00
>4.8	83.33	92.46	25.0	99.5	11.06	0.18
>5.2	83.33	92.96	26.3	99.5	11.85	0.18
>5.3	83.33	93.47	27.8	99.5	12.76	0.18
>5.5	83.33	94.47	31.2	99.5	15.08	0.18
>5.8	83.33	94.97	33.3	99.5	16.58	0.18
>6.5	83.33	95.48	35.7	99.5	18.43	0.17
>6.6	83.33	95.98	38.5	99.5	20.73	0.17
>6.8	83.33	96.48	41.7	99.5	23.69	0.17
>7	83.33	97.49	50.0	99.5	33.17	0.17
>7.2	83.33	97.99	55.6	99.5	41.46	0.17
>8.2	83.33	98.49	62.5	99.5	55.28	0.17
>8.5	50.00	98.49	50.0	98.5	33.17	0.51
>8.8	50.00	98.99	60.0	98.5	49.75	0.51
>11.9	33.33	100.00	100.0	98.0		0.67
$>\mathbf{2 9 . 4}$	16.67	100.00	100.0	97.5		0.83
>54.4	0.00	100.00		97.1		1.00

Criterion	Sens	Spec	+PV	-PV	+LR	-LR
≥ 0.2	100.00	0.00	2.9		1.00	
$\boldsymbol{> 0 . 2}$	100.00	1.51	3.0	100.0	1.02	0.00
$\boldsymbol{> 0 . 3}$	100.00	6.53	3.1	100.0	1.07	0.00
$\boldsymbol{> 0 . 4}$	100.00	15.08	3.4	100.0	1.18	0.00
$\boldsymbol{> 0 . 5}$	100.00	23.12	3.8	100.0	1.30	0.00
$\boldsymbol{> 0 . 6}$	100.00	30.15	4.1	100.0	1.43	0.00
$\boldsymbol{> 0 . 7}$	100.00	35.68	4.5	100.0	1.55	0.00
$\boldsymbol{> 0 . 8}$	100.00	41.21	4.9	100.0	1.70	0.00
$\boldsymbol{> 0 . 9}$	100.00	46.23	5.3	100.0	1.86	0.00
$\boldsymbol{> 1}$	100.00	53.27	6.1	100.0	2.14	0.00
$\boldsymbol{> 1 . 1}$	100.00	55.78	6.4	100.0	2.26	0.00
$\boldsymbol{> 1 . 2}$	100.00	59.80	7.0	100.0	2.49	0.00
$\boldsymbol{> 1 . 3}$	100.00	63.32	7.6	100.0	2.73	0.00
$\boldsymbol{> 1 . 4}$	100.00	66.33	8.2	100.0	2.97	0.00
$\boldsymbol{> 1 . 5}$	100.00	68.84	8.8	100.0	3.21	0.00
$\boldsymbol{> 1 . 6}$	100.00	71.36	9.5	100.0	3.49	0.00
$\boldsymbol{> 1 . 7}$	100.00	72.36	9.8	100.0	3.62	0.00
$\boldsymbol{> 1 . 8}$	100.00	72.86	10.0	100.0	3.69	0.00
$\boldsymbol{> 1 . 9}$	100.00	73.37	10.2	100.0	3.75	0.00
$\boldsymbol{> 2}$	100.00	74.37	10.5	100.0	3.90	0.00
$\boldsymbol{> 2 . 1}$	100.00	76.38	11.3	100.0	4.23	0.00
$\boldsymbol{> 2 . 2}$	100.00	76.88	11.5	100.0	4.33	0.00
$\boldsymbol{> 2 . 3}$	100.00	79.40	12.8	100.0	4.85	0.00
$\boldsymbol{> 2 . 4}$	100.00	80.40	13.3	100.0	5.10	0.00
$\boldsymbol{> 2 . 5}$	100.00	81.41	14.0	100.0	5.38	0.00

Comparing ROC curves

For diagnosing LCHAD:
C16 AUC = 1.000
C8 AUC $=0.534$

For diagnosing SCHAD:
C16 AUC = 0.581
C8 AUC $=0.982$

Professional
Practice
in Clinical Chemistry

Case 4: Student t test

If comparing a sample with the population from which it was selected:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

Or, if comparing two samples:

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}
$$

Case 4: Student t test

If comparing a sample with the population from which it was selected:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

Average age of attendees at a conference is 32
The ages of the 10 attendees in the front row are $35,37,40,30,34,35,38,32$, 34 and 39. Are older attendees more likely to sit on the front row?

$$
\text { Mean }=35.4
$$

$$
S=3.13
$$

$$
\begin{aligned}
t & =(35.4-32) \div(3.13 / \sqrt{10}) \\
& =3.4 \div(3.13 / 3.16) \\
& =3.4 / 0.99=3.4243
\end{aligned}
$$

9 degrees of freedom

Case 4: Student t test

If comparing a sample with the population from which it was selected:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

$t=3.4243$
9 degrees of freedom

$$
(N-1)
$$

Older attendees are more likely to sit on the front row.

$$
P=0.0075
$$

Case 4: Student t test

Or, if companing two samples:

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}
$$

Measured 8 controls yesterday:
Mean = 8.7
$S=1.42$

Measured 10 controls today:
Mean = 7.9
$S=0.86$

Is there a significant bias between the two days?

Case 4: Student t test

Or, if comparing two samples:

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{2}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}
$$

$$
1
$$

$$
\sqrt{ }(1.42)^{2} / 8+(0.79)^{2} / 10
$$

$$
=\sqrt{0} .252+0.062
$$

$$
=0.56
$$

Measured 8 controls yesterday:
Mean $=8.7$
S $=1.42$

Measured 10 controls today:
Mean $=7.9$
$S=0.86$
$t=(8.7-8.0) \div 0.56$
$=0.7 / 0.56$
$=1.25$

Case 4: Student t test

$$
t=1.25
$$

16 degrees of freedom

$$
\left(N_{1}+N_{2}-2\right)
$$

no significant bias between the 2 days

$$
P=0.1952
$$

	1-tail: 0.25	0.1	0.05	0.025	0.01	0.005	0.001
d.f.	2-tail: 0.50	0.2	0.1	0.05	0.02	0.01	0.002
1	1.000	3.078	6.314	12.706	31.821	63.657	318.309
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.215
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3.499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1.383	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4.144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
15	0.691	1.341	1.753	2.131	2.602	2.947	3.733
16	0.690	1.337	1.746	2.120	2.583	2.921	3.686
17	0.689	1.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.878	3.610
19	0.688	1.328	1.729	2.093	2.539	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2.518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.807	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
26	0.684	1.315	1.706	2.056	2.479	2.779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.701	2.048	2.467	2.763	3.408
29	0.683	1.311	1.699	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385

Professional
in Clinical Chemistry

Volume of Distribution (V_{d})

- The Volume of Distribution $\left(\mathrm{V}_{\mathrm{d}}\right)$ is the amount of blood, per Kg body weight, necessary to contain all of the body burden of drug at equilibrium concentration.

$$
\text { Plasma Concentration }=\frac{\text { Total Body Stores }}{\text { Volume of Distribution }}
$$

Interpreting V_{d}

- Drugs with low V_{d} are contained mostly in the plasma, because...
- They are highly water soluble (plasma water content is higher than tissues), or
- They are highly protein bound (which prevents them from freely diffusing into tissues
- Drugs with high V_{d} are mostly in tissues, and plasma levels may not reflect body burden

Example of V_{d} calculation

A 70 Kg man takes a 5 mg dose of phenobarbital $\left(\mathrm{V}_{\mathrm{d}}=1.0 \mathrm{~L} / \mathrm{Kg}\right)$. What is the maximum plasma phenobarbital concentration you can expect?

Plasma concentration $=$ total body stores \div volume of distribution

$$
\begin{aligned}
C & =(5 \mathrm{mg} / 70 \mathrm{Kg}) \div 1.0 \mathrm{~L} / \mathrm{Kg} \\
& =0.07 \mathrm{mg} / \mathrm{Kg} \div 1.0 \mathrm{~L} / \mathrm{Kg} \\
& =0.07 \mathrm{mg} / \mathrm{L}=70 \mu \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

Example of V_{d} calculation

A 55 Kg woman has a plasma theophylline ($\mathrm{V}_{\mathrm{d}}=0.5 \mathrm{~L} / \mathrm{Kg}$) concentration of $15 \mu \mathrm{~g} / \mathrm{L}$. What is her total body burden of theophylline?

Plasma concentration $=$ total body stores \div volume of distribution
$15 \mu \mathrm{~g} / \mathrm{L}=$ (concentration $/ 55 \mathrm{Kg}$) $\div 0.5 \mathrm{~L} / \mathrm{Kg}$
$(15 \mu \mathrm{~g} / \mathrm{L})(0.5 \mathrm{Kg} / \mathrm{L})=$ concentration $/ 55 \mathrm{Kg}$
$7.5 \mu \mathrm{~g} / \mathrm{Kg}=$ concentration $/ 55 \mathrm{Kg}$
$(7.5 \mu \mathrm{~g} / \mathrm{Kg})(55 \mathrm{Kg})=$ concentration

