Oxygen Concentration of Blood: PO₂, Co-Oximetry, and More

Gary L. Horowitz, MD
Beth Israel Deaconess Medical Center
Boston, MA

Objectives

- Define "O₂ Content", listing its 3 major variables
- Define the limitations of pulse oximetry
- Explain why a normal arterial PO₂ at sea level on room air is ~100 mmHg (13.3 kPa)
- Describe the major features of methemogobin and carboxyhemglobin

O₂ Concentration of Blood

- not simply PaO₂
 - Arterial O₂ Partial Pressure ~100 mm Hg (~13.3 kPa)
- not simply Hct (~40%)
 - or, more precisely, Hgb (14 g/dL, 140 g/L)
- not simply "O₂ saturation"
 - i.e., ~89%

O₂ Concentration of Blood

- rather, a combination of all three parameters
- a value labs do not report
- a value few medical people even know!

O₂ Content

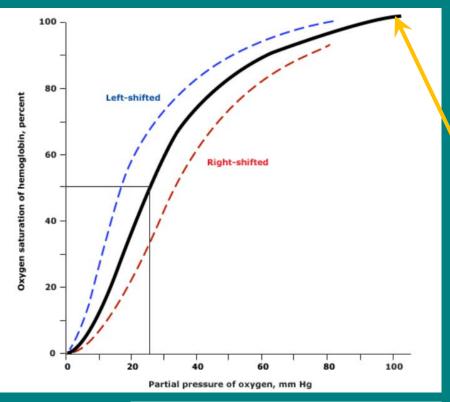
```
= 0.003 * PaO_2 + 1.4 * [Hgb] * [%O<sub>2</sub>Sat]
= 0.0225 * PaO_2 + 1.4 * [Hgb] * [%O<sub>2</sub>Sat]

kPa g/dL
```

normal value: about 20 mL/dL

Why Is the "Normal" P_aO₂ 90-100 mmHg?

- $PAO_2 = (FiO_2 \times [Patm PH_2O]) (PaCO_2 / R)$
 - PAO₂ is alveolar O₂ pressure
 - FiO₂ is fraction of inspired oxygen (room air ~0.20)
 - Patm is atmospheric pressure (~760 mmHg at sea level)
 - PH₂O is vapor pressure of water (47 mmHg at 37 °C)
 - PaCO₂ is partial pressure of CO₂
 - R is the respiratory quotient (typically ~0.8)
 - $\rightarrow 0.21 \times (760-47) (40/0.8)$
 - ~100 mm Hg
- Alveolar–arterial (A-a) O₂ gradient is normally ~ 10, so PaO2 (arterial PO2) should be ~90 mmHg


Insights from PAO₂ Equation (1)

- $PaO_2 \sim PAO_2 = (0.21x[Patm-47]) (PaCO_2 / 0.8)$
 - At lower Patm, the PaO₂ will be lower
 - that's why airplane cabins are pressurized
 - At higher Patm, the PaO₂ will be higher
 - we'll exploit this later
 - Also:
 - "normal" PaO₂ in Boston is higher than in Denver
 - your PaO₂ is lower during a storm than on a sunny day

Insights from PAO₂ Equation (2)

- $PaO_2 \sim PAO_2 = (0.21x[Patm-47]) (PaCO_2 / 0.8)$
 - On room air ($FiO_2 = 0.21$), at a given Patm,
 - As PaCO₂ decreases, PaO₂ increases
 - Patients who hyperventilate should have higher PO₂s
 - Don't be surprised if a patient with a PCO₂ of 20 has a PO₂ of 120 – it's expected!
 - As PaCO₂ increases, PaO₂ decreases
 - Patients with lung disease will have not only increased PaCO₂
 but lower PaO₂
 - Don't be surprised if a patient with a $PaCO_2$ of 60 has a PaO_2 of 150-80-10 = 70

Why is the "Normal" "O₂ Saturation" ~95%?

- sigmoid curve
- hemoglobin can bind
 ~ 1.4 mL O₂/g
 when fully saturated
- at PO₂ = 100 mmHg,
 100% saturated
- so, at a normal Hgb of ~14 g/dL), it holds1.4x14 = 19.6 mL/dL

www.uptodate.com

A Quick Review

- Under typical conditions, for the reasons given, PaO2 is ~100 mm Hg (~13.3 kPa)
- Based on the oxyhemoglobin dissociation curve, that PaO₂ corresponds to 100% "O₂ saturation", and each gram of Hgb can hold 1.4 mL of O₂
- So, returning to our O₂ content equation, we've explained the right-hand term

So, What's the Other Term?

- Actually, it's quite simple: dissolved O₂
- And the equation for it is equally simple:
 - 0.003 x PO₂ (mm Hg) [0.0225 X PO2 (kPa)]
 i.e., directly proportional to the partial pressure of O₂
 - at typical PO2's, it is negligible:
 0.003 x 100 mm Hg = 0.3 mL/dL
 0.0225 x 13.3 kPa = 0.3 mL/dL
 (vs Hgb-bound O₂ of 19.6 ml/dL,
 which we just calculated)

O2 Concentration of Blood

- rather, a combination of all three parameters
- a value labs do not report
- a value few medical people even know!

O₂ Content

 $\sim 20 \text{ mL O}_2/\text{dL}$

Different Scenarios Illustrating Oxygen Content Concepts

comments	PaO2	%O2Sat	Hgb	Hct	Dissolved Oxygen	Hgb- Bound O2	O2 Content
Normal	100	100	14	42	0.3	19.6	19.9
Low Hct	100	100	7	21	0.3	9.8	10.1
Low PaO2 (lung disease)	25	50	14	42	0.1	9.8	9.9
50% Methemoglobin	100	50	14	42	0.3	9.8	10.1
Very Low Hct No Transfusion	100	100	2	6	0.3	2.8	3.1
Hyperbaric Chamber	2200	100	2	6	6.6	2.8	9.4

Causes of Low Oxygen Concentration

- anemia (low hemoglobin/hematocrit)
 - what most physicians focus on
 - probably the most frequent cause
- low PaO₂ → low "O₂ saturation"
 - e.g., lung disease
- low "O₂ saturation" despite normal PO₂
 - i.e., carboxyhemoglobin or methemoglobin

Hemoglobin Species

- Oxyhemoglobin
 - oxygenated
- Reduced (Non-Oxygenated) Hemoglobin
 - capable of becoming oxygenated
- Carboxyhemoglobin (carbon monoxide)
 - cannot be oxygenated
- Methemoglobin (oxidized Fe moiety)
 - cannot be oxygenated
- How do we measure/distinguish them?

Spectrophotometry

48 I • LABORATORY PRINCIPLES AND INSTRUMENTATION

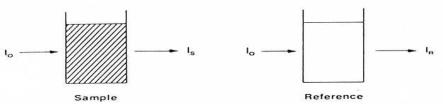


Figure 2-2. Transmittance of light through sample and reference cells. Transmittance of sample versus reference = I_s/I_B .

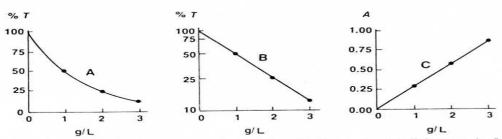


Figure 2-3. Transmittance and absorbance as a function of concentration. A, Per cent T, linear scale. B, Per cent T, logarithmic scale. C. Absorbance, linear scale.

$$A = -\log I_S/I_R = -\log T = \log \frac{1}{T} = \log \frac{100\%}{\text{per cent } T}$$

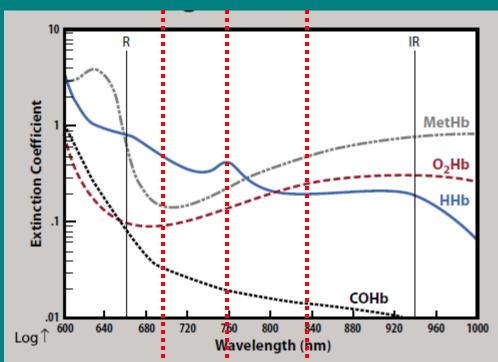
= log 100 - log per cent $T = 2$ - log per cent T

Tietz NW (Ed). Fundamentals of Clinical Chemistry. 2nd Edition. 1976.

With One Measurand, Life is Simple

- $A = \varepsilon * b * C$ (or A=abc)
- Absorbance = (Molar Absorbtivity)*(Pathlength)*(Concentration)
- Two ways to calculate C from measured A
 - Know ε and b
 - co-oximeter
 - Run standard(s) to calculate ε* b
 - most assays

Absorbances Are Additive

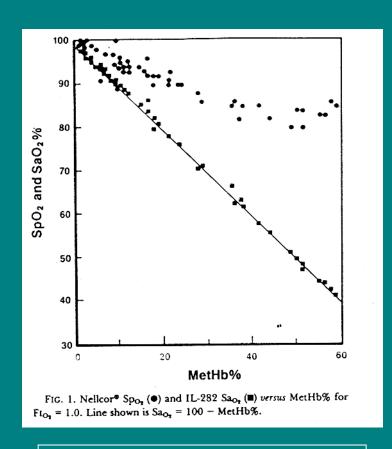

- If two species (M and N) are present,
 and each has absorbances at two wavelengths,
 you can solve two simultaneous equations to
 determine their concentrations
 b = known
 pathlength
- $A_{\lambda 1} = (\varepsilon_{M\lambda 1})(b)([M]) + (\varepsilon_{N\lambda 1})(b)([N])$
- $A_{\lambda 2} = (\varepsilon_{M\lambda 2})(b)([M]) + (\varepsilon_{N\lambda 2})(b)([N])$
- 0.845 = 0.0265 [M] + 0.0543 [N]
- 0.675 = 0.0453 [M] + 0.0277 [N]

 \rightarrow [M] = 7.9, [N] = 11.7

known molar absorbtivities

Absorbances Are Additive: General Principle

- To measure n species, you need measurements at n wavelengths
- Pulse oximeters: 2 wavelengths → 2 species

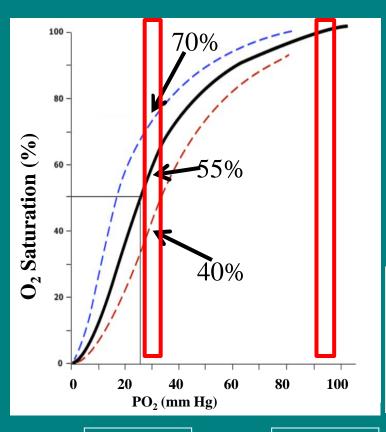


Adapted from:

Haymond S. Oxygen saturation. Clinical Laboratory News. February, 2006.

Co-Oximeters: >4 wavelengths → >4 species

Pulse Oximeters & Abnormal Hemoglobins



Barker SJ et al. Anesthesiology 1989;70:112-117.

- "simplifying" assumption:
 only oxyhemoglobin
 and reduced hemoglobin
 are present
- works most of the time, but not all of the time
- tends to overestimate oxyhemoglobin, just what you don't want

Oxygen Delivered to Tissues

oxygen delivered = arterial O_2 content –venous O_2 content

Line			O2 Co Arterial	O2 Delivered	
Black	95%	55%	18.9	11.1	7.8

 $P_{50} = PO_2$ where O_2 saturation is 50%

Blue: 18 (left-shift)
Black: 25 (normal)
Red: 37 (right shift)

typical venous PO₂

typical arterial PO₂

- Currently, there are 3 terms used for "oxygen saturation" (CLSI C-46, 2009)
 - hemoglobin oxygen saturation (SO₂)
 - fractional oxyhemoglobin (FO₂Hb)
 - estimated oxygen saturation (O₂Sat)
- in normal individuals, these values match closely
- but, in patients, they can be significantly different
- In general, physicians and other health care professionals
 - use the term O2sat (#3) to mean hemoglobin oxygen saturation (#1)
 - have never heard of the term fractional oxyhemoglobin (#2),
 though that is what co-oximeters "should" report

- SO₂ is calculated as:
 - oxyhemoglobin / (oxyhemoglobin + reduced hemoglobin)
 - represents the percentage of hemoglobin <u>capable of being oxygenated</u>
 that is oxygenated
 - in other words, the denominator explicitly omits from consideration methemoglobin or carboxyhemoglobin

- FO₂Hb
 - oxyhemoglobin / (total hemoglobin)
 - represents the percentage of <u>all hemoglobin present</u> that is oxygenated
 - when methemoglobin or carboxyhemoglobin is present, they are included in the denominator

O₂Sat

- An estimate of what the oxyhemoglobin should be using the measured PO2 and the oxyhemoglobin dissociation curve, assuming that
 - 1) that the patient's blood sample is absolutely typical (pH, temperature, 2,3-DPG concentration, etc.), and
 - 2) that no methemoglobin or carboxyhemoglobin is present
- This calculation, common on ABG analyzers, should not be reported

Example: Fireman Brought Into Emergency Room With Smoke Inhalation

The facts:

- $-PO_2 = 120$ (hyperventilation)
- hemoglobin fractions:oxy=80%, reduced=0%, carboxy=20%, met=0%

The CLSI values:

```
-SO_2 = 100\% [80/(80+0)]

-FO_2Hb = 80\% [80/(80+0+20+0)]

-O_2sat = 100\% [at PO2= 100 mmHg, normal hemoglobin is 100% saturated]
```

- My practice (though it is technically incorrect), is to report the value as 80% and call it O₂Sat
- At a minimum, make sure your clinicians know how your lab is handling these values

Methemoglobin

- we all make methemoglobin continuously
- normal values are roughly 1%
- represents oxidation of heme Fe atom from ferrous (+2) to the ferric (+3) state
- normally, our bodies reduce methomoglobin back to hemoglobin
- with increased oxidative stress (e.g., drugs) or with defective enzymes, methemoglobin can increase to pathologic levels
- patients present with shortness of breath (low O₂ content) and cyanosis (blue color)
- arterial blood looks brown, despite high PO₂

Carboxyhemoglobin

- represents hemoglobin complexed with carbon monoxide (CO)
- causes:
 - fires (smoke inhalation)
 - using gas or charcoal grills indoors
 - smoking
 - air pollution (living in urban areas)
- every home should have a CO (as well as a smoke) detector!
- patients present with shortness of breath (low O2 content)
- in contrast to methemoglobin,
 - blood is "cherry red"
 - FO₂Hb (co-oximetry) is low despite high PO₂
 - pulse oximetry overestimates oxyhemoglobin

Which is the best indicator of oxygen concentration in blood?

- A) PO_2
- B) Hematocrit
- C) O₂ content
- D) O₂ saturation

Which is the best indicator of oxygen concentration in blood?

- A) PO_2
- B) Hematocrit
- C) O₂ content
- D) O₂ saturation

Which of the following is true?

- A) A normal alveolar PO₂ is higher in Denver than in Boston because the air is cleaner
- B) A normal fractional oxyhemoglobin is higher in Denver than Boston because it has less air pollution
- C) Typical pulse oximeters provide reliable measurements of "oxygen saturation" for use in patients with smoke inhalation
- D) One must use arterial blood to get an accurate assessment of methemoglobin concentrations

What method principle is involved in measuring oxyhemoglobin percentages?

- A) Gas chromatography
- B) Ion selective electrodes
- C) Beer's Law
- D) O₂ electrode, followed by interpolation from oxyhemoglobin dissociation curve

Answers

1 (C) O₂ content

2 (B) A normal fractional oxyhemoglobin is higher in Denver than Boston because it has less air pollution

3 (C) Beer's Law