Clinical Utility of Red Cell and Platelet Antigen Genotyping In Transfusion Medicine

Dan Bellissimo, PhD, FACMG, BloodCenter of Wisconsin, Milwaukee, WI
Speaker Disclosure Information

• I have no conflicts of interest to disclose.
Learning Objectives

- Clinical utility of molecular testing in hemolytic disease of the fetus and newborn (HDFN), neonatal alloimmune thrombocytopenia (NAIT) and transfusion medicine.
- Genetics of the Rh blood group system and how allelic variants can confound molecular typing.
- Potential uses of fetal DNA in maternal plasma.
Hemolytic Disease of the Fetus and Newborn (HDFN or HDN)
Neonatal Alloimmune Thrombocytopenia (NAIT, NATP, NAT, AIT)

- HDFN and NAIT result from the alloimmunization of a mother to a paternal alloantigen inherited by a fetus.
- Alloantibodies cross the placenta and cause destruction of red blood cells or platelets of an antigen-positive fetus leading to clinical disease.
- HDFN typically occurs in the second pregnancy.
- NAIT can occur in the first pregnancy.
- Severity increases in subsequent pregnancies.
NAIT - Clinical Features

- Incidence: 1 in 1000 to 1 in 1500 live births
- Accounts for 3% of all thrombocytopenias and for 27% of severe cases (plt ct < 50K)
- ~50% of NAIT cases present in first pregnancies
- Isolated neonatal thrombocytopenia at birth
- Petechiae, GU/GI hemorrhage, intracranial hemorrhage
- Mother has circulating anti-platelet Abs directed at a platelet specific antigen.
- Mother has normal platelet count.
- Self-limited, resolves by 2-4 weeks
NAIT - Outcome

• Mortality 1-5%*
• Intracranial hemorrhage (ICH) 10-20%
• In utero ICH up to 75% of all ICH
• Late neurologic effects possible due to “silent” ICH

HDFN and NAIT Diagnosis

Criteria For Diagnosis

• Verifying a maternal antibody to a specific antigen found on paternal but not maternal platelets or red cells
• Demonstrate maternal/paternal antigen discrepancy consistent with maternal Ab with serological and/or molecular testing
• Molecular testing of fetus or newborn

Genotyping plays a key role in the management of HDFN and NAIT
NAIT - Managing A Subsequent Pregnancy

• Prediction of subsequent affected fetus
 – Paternal zygosity
 – Fetal platelet antigen genotyping

• Determination of severity of thrombocytopenia
 – Previous affected child in family
 – Fetal platelet counts
 – Ultrasound
 – Maternal anti-platelet antibody titer?

• Effective antenatal treatment strategies are available
 – IVIG with or without steroids to the mother during pregnancy
 – Repeated antigen negative platelet transfusions with early elective delivery
Platelet Membrane Glycoprotein Polymorphisms
Alloimmune Thrombocytopenia

HPA5(Br) (Glu505Lys)
Sit (Thr799Met)
HPA9 (Max) Bak^b variant (Val837Met)
HPA3 (Bak) (Ile843Ser)
HPA1 (PI^A) (Leu33Pro)
HPA6 (Ca/Tu) (Arg489Gln)
Gro (Arg633His)
Sr (Arg636Cys)

GPIa-IIa (α2β1)
GPIIb-IIIa (αIibβ3)

Glanzmann thrombasthenia

© PJ Newman 2001
Adapted from Humphries and Mould
Science 294:316, 2001, with permission
Platelet Alloantigens and Risk of NAIT

<table>
<thead>
<tr>
<th>Ag System</th>
<th>Common Names</th>
<th>Allelic forms</th>
<th>Phenotypic frequency</th>
<th>Gene</th>
<th>Risk of incompatibility (normal population)</th>
<th>% of NAIT cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPA-1</td>
<td>Pla</td>
<td>HPA-1a, HPA-1b</td>
<td>72% a/a 26% a/b 2% b/b</td>
<td>GPIIaL33P</td>
<td>1.96% (1a) 20.16% (1b)</td>
<td>79% 4%</td>
</tr>
<tr>
<td>HPA-2</td>
<td>Ko</td>
<td>HPA-2a, HPA-2b</td>
<td>85% a/a 14% a/b 1% b/b</td>
<td>GPIbT145M</td>
<td>12.75% (2a) 0.99 (2b)</td>
<td><<1% < 1%</td>
</tr>
<tr>
<td>HPA-3</td>
<td>Bak, Lek</td>
<td>HPA-3a, HPA-3b</td>
<td>37% a/a 48% a/b 15% b/b</td>
<td>GpIlbI843S</td>
<td>12.75% (3a) 23.31 (3b)</td>
<td>2% <1%</td>
</tr>
<tr>
<td>HPA-4</td>
<td>Pen, Yuk</td>
<td>HPA-4a, HPA-4b</td>
<td>99% a/a <0.1% a/b <0.1% b/b</td>
<td>GPIIaR143Q</td>
<td><0.1% (4a) <0.2% (4b)</td>
<td><1% <1%</td>
</tr>
<tr>
<td>HPA-5</td>
<td>Br, Hc, Zav</td>
<td>HPA-5a, HPA-5b</td>
<td>80% a/a 19% a/b 1% b/b</td>
<td>GPlaE605K</td>
<td>16.0% (5a) 0.99% (5b)</td>
<td>1% 9%</td>
</tr>
<tr>
<td>HPA-6</td>
<td>Ca, Tu</td>
<td>HPA-6a, HPA-6b</td>
<td>99% a/a <1% a/b <0.1% b/b</td>
<td>GPIIaR489Q</td>
<td><0.1% (6a) <0.2% (6b)</td>
<td><1%</td>
</tr>
</tbody>
</table>

~90% of NAIT cases involve HPA-1a, HPA-5b and HPA-3a
HPA1: Higher risk of response associated with HLA- DRB3*0101 positive mothers.

Iso-Bases Increase Specificity of Molecular Assays

- Novel Base Pairs that do not Cross React with Natural Bases:
 - Pair with Novel Complement Only
 - Recognized by common Enzymes
 - Licensed to EraGen Biosciences
MULTI-CODE™
Step 1 – Gated Multiplexed PCR

What is the Genotype of this "R" SNP?

Multiplex Gated PCR
(-)iGTP

[A] iCT
[T]
MULTI-CODE™

Step 2 – Addition of Multiplexed ASPE

Bead mixture and Strepavidin-phycoerythrin added after ASPE
All steps performed in one tube with no transfers, washes, or specialized separations
Unique microsphere sets are color-coded using a blend of different fluorescent intensities of two dyes. >100 addresses can be created.
Platelet Antigen Genotyping

HPA1
HPA2
HPA3
HPA4
HPA5
HPA6
HPA9
HPA15
Hemolytic Disease: Fetus and Newborn

Pathology

- Hemolytic anemia - Mild
- Kernicterus – Moderate
- Fetal hydrops - Severe

Treatment

- Phototherapy
- Exchange transfusion at birth
- Intrauterine transfusion
Severe HDN most commonly caused by RhD, Rhc, Kell and Fya

Bowman, J (1998) In Hematology of Infancy and Childhood, ed Nathan and Oski
Red Cell Antigens

<table>
<thead>
<tr>
<th>Ag System</th>
<th>Antigen Names</th>
<th>Gene</th>
<th>Alleles</th>
<th>Phenotype frequency*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RhD</td>
<td>D, d</td>
<td>RHD</td>
<td>RHD+, RHD-, RHDψ many variants</td>
<td>85% D+ 15% D- 92% D+ 8% D-</td>
</tr>
<tr>
<td>RhCc</td>
<td>C, c</td>
<td>RHCE</td>
<td>RHC, RHc, RHD-CE(3-7)-D</td>
<td>19% CC 49%Cc 32% cc 2% CC 25%Cc 73% cc</td>
</tr>
<tr>
<td>RhEe</td>
<td>E, e</td>
<td>RHCE</td>
<td>RHE, RHe</td>
<td>3% EE 26%Ee 71% ee 1% EE 21%Ee 78% ee</td>
</tr>
<tr>
<td>Kell</td>
<td>K, k (Kell, Cellano)</td>
<td>KEL</td>
<td>K1, K2 KEL1, KEL2</td>
<td><1% KK 9% Kk 91% kk Rare KK 2% Kk 98% kk</td>
</tr>
<tr>
<td>Kidd</td>
<td>Jka, Jkb</td>
<td>JK</td>
<td>JKA, JKB</td>
<td>26% JkAA 50%JkB 24% JkB 51% JkAA 41%JkB 8% JkB</td>
</tr>
<tr>
<td>Duffy</td>
<td>Fya, Fyb</td>
<td>FY</td>
<td>FYA, FYB, FYGATA</td>
<td>17% FyAA 49%FyAB 34% FyBB Rare Fynull 9% FyAA 1%FyAB 22% FyBB 68% Fynull</td>
</tr>
<tr>
<td>MN</td>
<td>M, N</td>
<td>GYP A</td>
<td>M, N</td>
<td>28% MM 50% MN 22% NN 24% MM 50% MN 26% NN</td>
</tr>
</tbody>
</table>

*Calculated from: The Blood Group Antigen Facts Book, Reid and Lomas-Francis, 2004
RhD Immunization

• Incidence of anti-D alloimmunization reduced from 2% to 0.1% by rhesus immune globulin

• Administer at 28 wks and within 72 hours of birth if the fetus is RhD-positive.

• Sensitization to RhD still occurs due to lack of anti-D administration, unrecognized miscarriage and fetomaternal hemorrhage.
HDFN Predictive Parameters

- Past Pregnancy History
- Maternal Alloantibody Titers
- Amniotic Fluid Spectrophotometry (ΔOD_{450})
- Perinatal Ultrasound
- Middle Cerebral Artery (MCA) Peak Systolic Blood Flow
- Percutaneous Umbilical Blood Sampling (PUBS)
- Paternal Zygosity testing
- Molecular Analysis of Fetal DNA
Monitoring HDFN by MCA Doppler

- More sensitive than ΔOD_{450}
- Equal or better specificity than ΔOD_{450}
- More accurate than ΔOD_{450}

Clinical Management: First Affected Pregnancy

- Determine paternal zygosity
- If paternal sample heterozygous, draw sample for fetal genotyping.
- Maternal titers repeated every month until ~24 weeks then every 2 weeks.
- At critical titer, serial MCA Doppler at 24 weeks then every 1-2 weeks

Clinical Management
Previously Affected Fetus

- Patient referred to center experienced in the care of severely alloimmunized pregnancy.
- Titers are not predictive of the degree of fetal anemia.
- If paternal sample heterozygous, draw sample for fetal genotyping.
- Serial MCA Doppler at 18 weeks and every 1-2 weeks.

Genetics of Rh System

Chromosome 1

- 90% homology at nucleotide and amino acid level resulting from gene duplication event. \textit{RHCE} is the ancestral gene.
- \textit{RHD} gene encodes the D antigen.
- D-negative is generally caused by absence of \textit{RHD} gene.
- \textit{RHCE} gene encodes RhC/c and RhE/e antigens.
- \textit{RHD} and \textit{RHCE} inherited as a haplotype.
Proposed Mechanism For The Formation of RhD- Negative Haplotype in Caucasians

Hybrid Rhesus Box is a potential molecular marker for a RHD-Negative allele

Gene Conversion in *RH* Genes

RHCE polymorphisms are transferred to the *RHD* gene.

Variant *RHD*-positive and -negative alleles

RHD-Positive Alleles

1. 2 3 4 5 6 7 8 9 10
 - RHD
 - DAR
 - DIIIa
 - DIVa
 - DIVb
 - DVI
 - DHAR

RHD-Negative Alleles

- 37 bp insert
- Stop codon
- RHD Deletion

- 1 2 3 4 5 6 7 8 9 10
 - RHD$_{\psi}$
 - RHD-CE(3-7)-D
 - RHD-CE(2-9)-D
 - RHD-CE(8-9)-D
 - RHD-CE(4-7)-D

RHD$_{\psi}$ observed in 24% RhD-negative African Americans

Partial D individuals can make anti-D
RHD Zygosity Testing

- Paternal RhD zygosity:
 - DD: All fetuses will be RhD-positive
 - Dd: 50% of fetuses will be RhD-positive.
- 30-50% are heterozygous for RhD
- Historically, zygosity prediction was performed using serology and Rh haplotype frequencies. Not accurate in all ethnic groups.
- Hybrid box assay detects the common RHD deletion but not other RHD-negative alleles.
RHD Zygosity Assay

- Quantitative fluorescent PCR of *RHD* exons 5 and 7 using RHCE Exon 7 as a two copy internal control.

- Ratio of exon 5 or 7 to RHCE exon 7 using to determine zygosity. (~0.5 for heterozygotes, ~1.0 for homozygotes)

- Exon 5 specifically detects RHD, not RHDψ

- Gene variants identified by copy number discrepancies between exon 5 and 7.
Molecular Testing for *RHD* Zygosity

Exon ratios distinguish heterozygous and homozygous samples.

Variants recognized by differences in zygosity between exon 5 and 7.

Fetus is RHD-positive and at risk for HDFN
Pregnancy monitored with Doppler
Transfusion as required.

Adapted from Wagner et al (2001) BMC Genetics 2:10
Prenatal Testing: Variant RHD Alleles

<table>
<thead>
<tr>
<th>Exon</th>
<th>NC</th>
<th>D+</th>
<th>D-</th>
<th>Dψ</th>
<th>F1</th>
<th>M1</th>
<th>M2</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RHD-negative mother

RHD-Positive mother
Prenatal Samples for HDFN Testing

<table>
<thead>
<tr>
<th>Sample</th>
<th>Risks and Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amniotic Fluid</td>
<td>Risk of fetal loss (<0.5%) and hemorrhage (17%)</td>
</tr>
<tr>
<td>CVS</td>
<td>Risk of fetal loss (1-2%)</td>
</tr>
<tr>
<td>PUBS</td>
<td>Risk of fetal loss and hemorrhage, more difficult to perform.</td>
</tr>
<tr>
<td>Fetal Cells</td>
<td>Insufficient quantity</td>
</tr>
</tbody>
</table>
Properties of Cell Free DNA in Plasma

• Plasma DNA are mainly short fragments
• Fetal fragments are shorter than maternal fragments (<0.3 kb).
• Mean half-life 16.3 minutes (range 4-30)
• Rapid turnover suggests fetal DNA is liberated at 22,400 copies per minute.
• Less susceptible to false-positives results as caused by persistence of fetal cells.
Clinical Utility of Non-Invasive Prenatal Diagnosis (NIPD): HDFN and NAIT

- Avoids amniocentesis and the risk of further alloimmunization while identifying fetuses at risk.
- Avoid IgG prophylaxis in patients with a negative fetus. (Cost and human blood product)
- Clinical studies in Europe and US demonstrate the accuracy of testing (2002-2011).
- In the US, intellectual property has limited the use of NIPD. RHD testing became available in 2008. One laboratory currently offers the test. First clinical study published in 2011.
Estimated Quantity of Fetal DNA in Maternal Plasma

(Finning et al. Transfusion 42: 1079)

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th>Fetal DNA Copy number/ml plasma</th>
<th>Median</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td><14</td>
<td>Mean 28 ± 17</td>
<td>25 (12-61)</td>
<td>10</td>
</tr>
<tr>
<td>15-28</td>
<td>Mean 44 ± 28</td>
<td>35 (6-130)</td>
<td>45</td>
</tr>
<tr>
<td>29-42</td>
<td>Mean 200 ± 329</td>
<td>80 (23-1324)</td>
<td>16</td>
</tr>
<tr>
<td>Unknown</td>
<td>Mean 96 ± 65</td>
<td>73 (26-228)</td>
<td>10</td>
</tr>
</tbody>
</table>
Diagnostic Accuracy of RHD NIPD Assays

<table>
<thead>
<tr>
<th>Reference</th>
<th>Wk Gest</th>
<th># Patients</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy*</th>
<th>False Pos</th>
<th>False Neg</th>
<th>Inconclusive # (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finning et al 2008</td>
<td>≤28</td>
<td>1869</td>
<td>96.7</td>
<td>98</td>
<td>95.7 99.1</td>
<td>14</td>
<td>3</td>
<td>64 (3.4)</td>
</tr>
<tr>
<td>Clausen et al 2011</td>
<td>25</td>
<td>2312</td>
<td>99.9</td>
<td>99.3</td>
<td>96.5 99.6</td>
<td>6</td>
<td>2</td>
<td>74 (3.2)</td>
</tr>
<tr>
<td>Akolekar et al 2011</td>
<td>11-13</td>
<td>586</td>
<td>98.2</td>
<td>96.4</td>
<td>84.6 97.6</td>
<td>6</td>
<td>6</td>
<td>84 (14.3)</td>
</tr>
<tr>
<td>Bombard et al 2011</td>
<td>11-13</td>
<td>234</td>
<td>97.2</td>
<td>96.9</td>
<td>85.6 97.1</td>
<td>2</td>
<td>4</td>
<td>27+ (11.5)</td>
</tr>
<tr>
<td>Bombard et al 2011</td>
<td>6-30</td>
<td>205</td>
<td>100</td>
<td>98.3</td>
<td>95.6 99.5</td>
<td>1</td>
<td>0</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>Tyman et al 2011</td>
<td>≤32</td>
<td>148</td>
<td>100</td>
<td>100</td>
<td>98.7 100</td>
<td>0</td>
<td>0</td>
<td>2++ (1.4)</td>
</tr>
</tbody>
</table>

*Accuracy with and without inconclusive samples
*11/27 were RHD variants/RHD pseudogene / 19% African Americans
**4% cases fetal sex assignment was incorrect.

- Despite the high sensitivity and specificity of these assays, there is still a significant level of false positive, false negative and inconclusive results compared to conventional testing.
Causes of Analytic Problems in NIFD

- Quality of DNA preparation
- Difficulty controlling appropriate input of fetal genomes
- Lack of adequate control fetal genetic markers
- Variant alleles (ethnic-specific variants)
- “Vanishing” twin
- General limitations of current technology.

NIPD brings its own unique set of quality assurance challenges for the clinical laboratory.
Fetal Quantifier Assay

Identify differentially-methylated targets in placenta

Digest maternal DNA

Amplify and detect fetal and competitor DNA

Quantify fetal target in relation to competitor copy number

Nygren et al 2010 ClinChem 56::1627-365
Serological reagents are not available for many red cell and platelet antigen systems
Applications of Genotyping for Red Cell Antigens

- Predicting phenotype in chronically transfused patients who has developed an antibody.
- Screening of donors for antigen-negative blood.
- Better antigen matching prior to transfusion.
- Distinguishing RhD-negative, weak D or DEL.
- Typing for antigen systems where serological reagents are rare or nonexistent.
- Characterization of serological variants.

Providing rare and antigen-matched blood requires screening of thousands of donors.
Alloimmunized Transfusion Recipients

- There are +15MM transfusions/yr in the US
 - 1st transfusion/pregnancy → ~4% alloimmunized
 - Chronic transfusion? up to 50% of alloimmunized
- Increased demand for expanded patient typing and antigen-matched blood to avoid transfusion reactions.
 - +100,000 patients: SCD, MDS, AA
- Increasing demand for antigen typed blood
 - increase the number of antigen-typed donors (multiple antigens)
 - Increase number of uncommon and rare requests for donors

There is a need for mass-screening of blood donors
The OpenArray Plate

- A unique method to run ~3000 low-volume solution phase assays in parallel
- Equivalent to eight 384-well or thirty-two 96-well plates
OpenArray Anatomy

- Hydrophilic and hydrophobic coatings
- Fluid retention by capillary action
- Accurate and precise fluidics

33 nL volume
Platform Flexibility

Analyze different combinations of samples per plate & assays per sample

<table>
<thead>
<tr>
<th>Samples/plate</th>
<th>Assays/sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>16</td>
</tr>
<tr>
<td>96</td>
<td>32</td>
</tr>
<tr>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>24</td>
<td>128</td>
</tr>
<tr>
<td>12</td>
<td>256</td>
</tr>
<tr>
<td>6</td>
<td>512</td>
</tr>
<tr>
<td>3</td>
<td>1024</td>
</tr>
<tr>
<td>1</td>
<td>3072</td>
</tr>
</tbody>
</table>
Red Cell Genotyping Panel

Common Panel (16) (Tx/WAIHA)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Rh | C/c
 C (+190ins)
 E/e
 Rhce nt48C |
| Kell | K/k
 Kp(a/b)
 Js(a/b) |
| Duffy | Fy(a/b)
 FYnull -67t/c |
| Kidd | Jk(a/b) |
| MNS | M/N
 S/s
 U (nt230C>T)
 U (i5+5g>t) |
| Lu | Lua/b |
| Do | Doa/b |

Rh Variant Panel (Sickle Cell Disease)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | 85
 137 'Altered C'
 223
 233
 238
 245
 336
 342 |

Altered C, c, e antigens
V, VS, Crawford
hrB/hrS: ceMO, ceEK, ceTI
Multiple assays are performed in "parallel simplex" on the same OpenArray.
Summary

• NAIT and HDFN are caused by alloimmunization to a paternally-inherited form of an antigen.
• Molecular testing is useful for identifying antigen discrepancies, paternal zygosity, prenatal testing. Beware of variants!
• Prenatal testing using fetal DNA in maternal plasma may help avoid invasive procedures.
• Red cell genotyping can be used to provide an expanded antigen profile on patients and for identifying antigen-negative donors.
Self-Assessment Questions

• How is molecular testing used in the management of NAIT and HDFN cases?
• Is it possible for an Rh-positive women to make anti-D?
• A fetus was tested for RHD from maternal plasma and found to be an RHD-negative female. What controls are needed to confirm this result?
• Explain how molecular testing can be used to determine blood type in a transfused patient.