Microbiology Applications of Mass Spectrometry
September 7, 2012
Chicago, IL

Donna M. Wolk, MHA, Ph.D., D(ABMM)
Division Chief, Clinical and Molecular Microbiology
Principle Investigator, Infectious Disease Research Core
Associate Professor, Pathology
University of Arizona, College of Medicine and BIO5 Institute
Disclosures

Research Contracts: Abbott Molecular, AdvanDx, Argylla, bioMérieux, Becton Dickenson, Bio-Rad, Cepheid, Great Basin, Ibis Biosciences, Luminex, MDC, MicroPhage, NorDiag, Qiagen, Zeus

Speaker: Abbott Molecular, AdVanDx, Becton Dickenson, BioRad, Cepheid, Eragen, Qiagen

Consultant: Abbott Molecular, Cepheid, Accelr8
Objectives

1. Discuss principles of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) related to infectious disease diagnostics
2. Compare and contrast performance of commercial mass spectrometer systems that use MALDI-TOF/MS
3. Describe typical workflow and operations of MALDI-TOF/MS in a clinical microbiology laboratory
4. Provide case histories and examples of effective implementation milestones and improvement to patient care at the University of Arizona
The Pre-quel: Thinking differently about pathogen identification?
UAMC Microbiology Drives Antibiotic De-escalation

Rapid Testing

Results to ID Pharmacy

± Rx Intervention
Pre-quel: Summary of UAMC Impact for PNA FISH Intervention

• Patient Outcomes Improved
 • Higher survival rates, especially in ICU
 • 34.6 to 15.6% for GPCPC (19% improvement)
 • 41.7 to 5.9% for yeast (35.8% improvement)

• Laboratory: Faster TAT (> 3days)

• Improved Healthcare Utilization
 • > $1.2 millions saved per year
 (after ~$32,000 costs for reagents removed)

• Antibiotic Decisions Optimized Earlier escalation or de-escalation

Gamage et al, 2011 ICAAC Abstract D-1302b
Other Reports of Reduced Mortality

PNA FISH vs. Conventional Methods

1. Enterococci (ICU) -17%
2. Candida (ICU) -36%
3. Staphylococci (All) 12%
4. S. aureus (ICU) -38%
5. E. faecium (ICU) -19%

Control Group PNA FISH

1,2) University of Arizona Medical Center: Poster D-1302b. ICAAC 2011. Chicago, Illinois, USA.
3) Orlando Regional Medical Center: Poster 1023. IDSA 2010. San Diego, California, USA.
Thinking about possibilities...
Matrix Assisted Laser Desorption Ionization (MALDI)

Bruker Daltonics MALDI BioTyper (TM)
bioMérieux = Vitek MS

Measure and compare high abundance proteins
MALDI-TOF Functional units

- **Specimen Ionization source/chamber (MALDI)**
 - Laser-based vaporization of specimen

- **Analyser:** Time of Flight (TOF) analyzer
 - Separates ions according to mass-to-charge ratios (m/z)

- **Particle Detector**
 - Detects separated ions and identifies relative abundance

- **Data System**
 - Signals sent and formatted in m/z spectrum
Step 1) Sample preparation/Direct Transfer

- **Cell Disruption** bacteria/yeast colony

 - Mechanical for rigid cells (e.g. Sonication or boiling)

 - Organic solvent extraction (improves quality for difficult microbes, yeast and fungi)

 - Strong organic acid (formic or trifluoroacetic acetic acid [TFAA]) before/during matrix addition
Review of Example Full Sample Prep

- Mix Sample w/ 70% ethanol
- Centrifuge
- Dry pellet
- Add formic acid and vortex
- Add acetonitrile and vortex
- Centrifuge
- Add 1ul to metal plate
- Add matrix and dry
- Place into chamber and apply laser
2) Matrix added

- Pre-treated/untreated samples mixed/overlaid with matrix and dried

- **Matrix**: 1 μl UV absorbing sln.
 - α – cyano – 4 – hydroxy - cinnamic acid (CHCA)
 - Preferred for proteins
 - CHCA in 50% acetonitrile and 2.5% TFAA (tri-fluoroacetic acid); gives strong absorbance at UV laser wavelength 337nm
3) Laser Applied

- **Energy Transfer: Matrix to analyte**

- Pulsed laser causes vibrational excitation of CHCA, which transfers protons to proteins

- Responsible for sublimation (transition of analyte from solid to gas phase, without intermediate liquid phase); analyte desorbed
4) MALDI-TOF Fragments Proteins

- High-energy electron beam breaks molecule apart
- Fragment’s mass and relative abundance reveal information ~
 - Structure
 - Composition of the molecule

To TOF MS

Pulsed Laser Beam, N₂ ~ 337nm

Sample

Ions
5) Spectra generated directly from organisms
 Compare to reference database of known organisms.

 Report results based on confidence of the spectral match.

Kaleta E., Wolk D. Clin Lab News.
May 2012: Volume 38, Number 5
Variability of Spectra Based on Genus and Species

- Aspergillus fumigatus
- Bacillus subtilis
- Candida albicans ATCC 10231
- Escherichia coli DH5alpha

Intens. [a.u.] vs. m/z
Score based pattern matching to a reference database

- Unknown microorganism is compared against reference library of spectra from culture collection strains

- ‘Goodness of fit’ is ranked and a threshold is applied for identification
Thresholds Set

- Match profile of unknown organism to reference database/library
- Ranking according to matching score (scale 0-3) for Bruker (% scores used for Vitek)
- Threshold for correct identification 2.0 (1.8, etc.)

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
<th>Symbols</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.300 ... 3.000</td>
<td>highly probable species identification</td>
<td>(++++)</td>
<td>green</td>
</tr>
<tr>
<td>2.000 ... 2.299</td>
<td>secure genus identification, probable species identification</td>
<td>(+++)</td>
<td>green</td>
</tr>
<tr>
<td>1.700 ... 1.999</td>
<td>probable genus identification</td>
<td>(+)</td>
<td>yellow</td>
</tr>
<tr>
<td>0.000 ... 1.699</td>
<td>no reliable identification</td>
<td>(-)</td>
<td>red</td>
</tr>
</tbody>
</table>
Commercial Systems

MALDI-TOF Systems Aimed at Clinical Use

Bruker Daltonics MALDI BioTyper (TM)
bioMérieux/Shimadzu = Vitek MS
Bruker MALDI Biotyper (TM) system

MALDI-TOF-MS
MALDI BioTyper™ system

• Measures high-abundance proteins, including many ribosomal proteins
 • ID based on characteristic spectrum of protein expression patterns

• Circa 2006, IVD-CE Mark 2009, RUO in US

• For Identification/classification
 • Gram positive and negative aerobic/anaerobic bacteria
 • Yeasts and multi-cellular fungi
Bruker Ultraflex III Data Acquisition window
MBT: Client Server Architecture

Links to Phoenix and Kiestra

LIMS Integration

MBT-Software (Server)

microflex

MBT-Satellite Software

MBT-Client / Interactive Validation

MBT-Satellite on Tablet PC
NEW: Control the MBT workflow with multiple Tablet PC s and iPhone/SmartPhone

- Links target/specimen/isolate
- Wireless connectivity to MBT

MALDI Biotyper 3.0
Tablet PC Project setup

New Orleans, 05/22/2011
bioMérieux Vitek MS®

MALDI-TOF-MS
bioMérieux/Shimadzu

- Shimadzu (Kyoto, Japan) & bioMérieux (Marcy l’Etoile, France)

- Microbial database acquired from AnagnosTec, advanced further by bioMérieux (for IVD)

- Soon: Fully integrated with Vitek antibiotic susceptibility testing (AST) via MYLA software
Vitek MS Data Acquisition window
High level quality results (ready to be sent):
- Perfect quality control (acquisition and identification).
- Very good match with the knowledge base (single species call).
- Isolate results consolidation for duplicate deposit.

Medium quality results (decision to be made by user):
- Perfect quality control (acquisition and identification).
- Low discrimination.
- Discrepant Isolate results for duplicate deposit.

Low quality results (to be discarded by user):
- Acquisition failed (lack of matrix).
- Calibration failed.
- No identification.
Low background
Bar Codes
Integration
Traceability

4 “benches”

* For research use only-USA; IVD-planned
Thinking about results...
MALDI-TOF Applications
Review of Literature

High accuracy for most microbes
Gaps still exist
Think critically
Concordance Results of 2 MALDI-TOF IDs (n=720)

• **Bruker Biotyper**
 • High-confidence ID for 674/680 isolates, \(99.1\%\) correct

• **bioMérieux Vitek MS**
 • High-confidence ID for 635/639 isolates, \(99.4\%\) correct
 • Saramis dbase will improve with IVD

Concordance Results of 2 MALDI-TOF IDs (n=1129, 928 ID to species level)

- **Bruker Biotyper MicroFlex LT**
 - Correct species ID 92.7%

- **bioMérieux Vitek MS IVD**
 - Correct species ID 93.2%

E.g. Clinical Pathogens/high concordance

- **Non-fermenters** (*Degand et al, 2008; Mellman et al 2008, Van Veen et al, 2010; Saffett et al, 2011*)
- **HACEK** (*Courtier et al, 2011*)

- **Enterococci** (*Eigner et al. Clin Lab 2009*)
- **Streptococci** (*Friedrichs et al. J Clin Microbiol 2007*)

- **Neisseria spp** (*Ilina et al. J Mol Diagn 2009*)
- **Listeria monocytogenes** (*Barbuddhe et al. 2008*)

- **Inter-lab reproducibility 98.75% accuracy** (*Mellmann et al 2009*)
- **Comparison with genetics**: (Kaleta, E., et al 2011, Clin. Chem)
Anaerobes

- **Bacteroides**: Nagy et al. CMI 15: 796-802 2009
- **Misc. anaerobes**: Soki J, Nagy E, Backer S: Publication in preparation
Mycobacteria and Nocardia

Macheras E, JCM. 2009 and 2011; Leao SC JCM 2009; Saleeb et al, JCM, 2011; Zelazny et al JCM, 2009

Mycobacteria and Nocardia: Conville PS et. al JCM 2006; Zelazny AM et.al. JCM 2005

Nocardia: Verroken et. al. JCM 2010
Antimicrobial Resistance

Carbapenem resistance in *B. fragilis*: Wybo et al. JCM, 2011

Yeast susceptibility: Marinach et al, Proteomics, 2009, 9, 1-5
Genotyping

MRSA: Wolters, et al. 2011 *Int J Med Microbiol* 301:64-68

Fungi: *Candida* spp.

More preparation required for higher quality of spectra

Candida:

Fungi: Molds

More preparation required for higher quality of spectra

- *Fusarium spp.*: Marinach et al, Et Clin Microbiol Infect., 2010
Thinking about change...
Tips for RUO Implementation

- Save isolates for > 1 year (total n ~ > 1,000)
- Ensure diversity of bacteria and MLS staff (all shifts)
- Target sample exchange to increase rare samples
- Integrate method verification with routine training and competency
- Consider duplicate testing at first
- Phase in with common microbes
Try double spotting during training
Good Concordance: Results of MALDI-TOF ID vs. Conventional ID (n=1660)

Seng et al, *CID*, 2009

Database and **spotting quality** were biggest challenges
New Hires?
GET A MAGNIFIER!

GET A LAMP!
Set up a tracking log to avoid mix-ups...
Ergonomics: Get a “rolling chair”
Vitek MS vs. Vitek 2
UAMC Results

Aerobic/Anaerobic bacteria and Candida spp.
166 different species

n = 858 (38 Anaerobes, 63 yeast, rest were aerobic)

From ~ all body sites” normally sterile and other
Agreement for microbes, N < 5 each

- Aeromonas hydrophilia
- Eickenella corrodens
- Fusobacterium nucleatum
- Pseudomonas putida
- Beta Strep, not group A or B
- Enterococcus gallinarum
- Streptococcus intermedius
- Bacteroides ovatus
- Clostridium septicum
- Nutritional variant strep
- Prevotella disiens
- Ralstonia spp.
- Staphylococcus hominis
- Bacillus spp.
- Eickenella spp.
- Moraxella spp.
- Staphylococcus haemolyticus
- Candida krusei
- Neisseria meningitidis
- Acinetobacter ursingii
- Beta Strep, Group F
- Corynebacterium striatum
- Pasteurella canis
- Proteus vulgaris
- Raoultella planticola
- Staphylococcus intermedius
- Candida dublindiensis
- Enterococcus avium
- Prevotella bivia
- Staphylococcus simulans
- Diphteroids (Corynebacterium spp.)
- Propionibacterium acnes
- Anaerobic Gram Neg Rod
- Candida guilliermondii
- Haemophilus parainfluenzae
- Pasturella canis
- Pseudomonas stutzeri
- Salmonella
- Streptococcus maltophilia

> 39 species
Accuracy of Vitek MS in AZ Microbe Set
n=858 (24 Discordant)

- Family Match Only
- Discordant
- No Match
- Split Call Match
- Concordant

91%
5%
3%
1%
<1%
Shigella n=7
Gardnerella n=3
Others n=1

Discordant Samples, Vitek vs Vitek MS

- Alcaligenes faecalis
- Citrobacter sedlakii
- Corynebacterium striatum
- Enterobacter asburiae
- Klebsiella oxytoca
- Pantoea spp.
- Ralstonia mannitolyltica
- Serratia fonticola
- Brevundimonas vesicularis
- Citrobacter youngae
- Enterobacter aerogenes
- Gardnerella vaginalis
- Nocardia otitidiscavarium
- Proteus vulgaris
- Raoutella ornithina
- Shigella sonnei

Send for sequencing
Split calls (send for sequencing)

<table>
<thead>
<tr>
<th>Vitek</th>
<th>Vitek MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter aerogenes</td>
<td>Enterobacter aerogenes/Klebsiella pneumoniae</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Shigella / Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>(MS second repeat correct but only 82.3% score)</td>
</tr>
<tr>
<td>Neisseria animalonis/N. zoodegmatis</td>
<td>Neisseria zoodegmatis</td>
</tr>
</tbody>
</table>
E.g. Patient “Saves”

- Salmonella ID, day 1
- *S. aureus* ID, day 1 and when latex faltered
- *Methylobacterium*, day 3, same day as growth
- Cost savings vs sequencing of fastidious GNR
UA/JHH/RI Hospital Study

Sepsityper 381 samples
 JHH n=226, Bactec
 Brown n=155, TREK

34 mixed organism samples excluded

347 single-organism samples
 (45 species by conventional methods)
 230 gram-positive bacteria
 103 gram-negative bacteria
 14 yeasts

Median time from BC + to extraction was 4.3 h
Results UA/JHH/RI, n=347

- Agree: 275 (79%)
- Discordant: 9 (5%)
- No Reliable ID: 16 (3%)
- Insufficient protein: 47 (13%)
Thinking about discoveries...
Goal: Actionable Results

Microbiology Laboratory, Pharmacy, Physicians Focus on Antimicrobial De-escalation and Antimicrobial Stewardship

- Direct MALDI-TOF Improves Appropriateness of Antibiotic Treatment of Bacteremia

- 11.3% increase in the patients w/ appropriate Rx 24 hours after blood culture positive

- (75.3% vs 64.0% (p = 0.01).
Strategy for Rapid ID/Susceptibility

- Tested Gram-Negative Bacteria from Positive Blood Cultures
 - Bruker MALDI Biotyper coupled w/ rapid susceptibility testing (BD Phoenix)

Thinking about a different perspective...
Identification and typing of bacteria in the future by MALDI-TOF MS?

• Take great care with implementation

• More development of the databases is needed

• Standardization should be carried out to obtain comparable results
 • Watch for ARUP Publication (Fisher)

• Develop practice guidelines and algorithms for clinicians and pharmacists
Acknowledgements

• IDRC: Desiree Johnson, Dulini Gamage, Joseph Marano, Erica Isaacs, Daniel Olson

• UMC: Natalie Whitfield, Lorraine Dominguez, Ellen Tuttle, Laurel Stickell, Bruce Anderson, Katie Mathias, David Nix, other pharmacy residents & microbiology technologists

• Wysocki Research Group: Dr. Vicki Wysocki, Erin Kaleta

• University of Geneva Hospital: Jacques Schrenzel, Abdessalam Cherkaoui

• Johns Hopkins University (K. Carroll group)
• Brown University/Lifespan (K. Chapin Group)
Questions