Laboratory Test Utilization

Brad S. Karon MD PhD
Associate Professor of Lab Med Pathology
Mayo Clinic, Rochester MN
Disclosure

• Relevant Financial Relationship(s)
 • Employed by Mayo Clinic

• Off Label Usage
 • NONE
Outline

• List successful strategies to address laboratory test utilization
• Identify the most effective strategies to improve inpatient test utilization
• Define pitfalls and caveats in the implementation of test utilization strategies
Laboratory Test Utilization Definition

• A strategy for performing appropriate laboratory and pathology testing with the goal of providing high-quality, cost-effective patient care

• Laboratory tests including anatomic pathology:
 • $60 - $70 billion
 • ~4% of healthcare costs
 • 60-70% objective information in medical record
 • Molecular / Genetics is 15% of laboratory costs; anticipated to reach 25% soon
 • Largest growth: proprietary tests, genetic tests, and test bundling
Unnecessary laboratory testing

• Traditionally “experts” have estimated that 20-40% of lab orders were “unnecessary”

• 15 year meta-analysis of published lab utilization studies (1997-2012)
 • Zhi et al., PLoS ONE 8(11):e78962, 2013
 • Overutilization: test ordered but not indicated
 • Underutilization: test indicated but not ordered
 • Initial testing: testing during initial evaluation of patient or symptom
 • Repeat testing: Testing after initial test
 • Restrictive criteria: clear indication for test required
 • Permissive criteria: no obvious contra-indication
Unnecessary laboratory testing

• Findings from Zhi et al.
 • Overall rate of inappropriate (overutilization) testing 20.6%
 • Overall rate of underutilization 44.8% (based on fewer studies)
 • Rate of inappropriate initial testing 43.9%
 • Rate of inappropriate repeat testing 7.4%
 • Inappropriate use by restrictive criteria 44.2%
 • Inappropriate use by permissive criteria 12.0%
• 10-40% lab tests are unnecessary (using objective criteria)
• Underutilization as big a problem as overutilization
Approaches Used by Laboratories to Reduce Unnecessary Testing

• Establish a *Clinical-Laboratory Practice Committee* or *Clinical-Laboratory Utilization Committee*

• Review and reduce send-out testing (formulary)
 • Focus on high cost genetic testing

• Develop report cards and perform audits on providers and services

• Consultative services
Laboratory Test Algorithms and Guidelines

- Four types of algorithms:
 - **Pathologist-driven**: Review of pathology findings determine next steps in testing algorithms; cancel or add appropriate next steps
 - **Genetic Counselor-driven**: Review of genetic test requests require genetic experts with laboratory knowledge; make phone calls to add or cancel testing
 - **Laboratory-driven**: Laboratory results drive subsequent test selection. Testing is performed by laboratories using available specimens; specimens are shared between labs
 - **IT-driven**: Clinical input and information drive what testing gets ordered or not
Myeloproliferative Neoplasm: A Diagnostic Approach to Bone Marrow Evaluation

Clinical suspicion of myeloproliferative neoplasm

Bone marrow testing begins with
- #6434 Hematopathology Consultation
- #8506 Chromosome Analysis, Hematologic Disorders, Bone Marrow
- #60026 JAK2 V617F Mutation Detection, Bone marrow
- #89006 BCR/ABL, mRNA Detection, Reverse Transcription-PCR (RT-PCR), Qualitative, Diagnostic Assay
 OR #80578 BCR/ABL, Translocation 9:22, FISH (D-FISH)

Bone marrow morphology, MPN?

Positive or Equivocal for JAK2 V617F Mutation

Chronic myelogenous leukemia

No further testing

Positive for BCR/ABL

No

Negative for JAK2 V617F Mutation

Not supportive of PV

PV possible

#60025 JAK2 Exon 12 and Other Non-V617F Mutation Detection, Bone Marrow

ET

PMF

MPN, not otherwise specified (ET or PMF)

Positive

PV

ET

PMF

MPN, not otherwise specified (ET or PMF)

Negative

ET

PMF

MPN, not otherwise specified (ET or PMF)

No further testing

Positive for JAK2 V617F Mutation

Complete blood count (CBC)

#80173 Erythropoietin (EPO), Serum

ET

PMF

MPN, not otherwise specified (ET or PMF)

No further testing

Equivocal

Clinical and morphologic suspicion of MPN

High

Low

#60024 MPL Exon 10 Mutation Detection, Bone Marrow

Positive

Negative

No further testing

Legend
PV: Polycythemia vera
ET: Essential thrombocythemia
PMF: Primary myelofibrosis
MPN: Myeloproliferative neoplasm
Hematopathologist-Driven Algorithm: Chromosome Utilization

<table>
<thead>
<tr>
<th></th>
<th>Chromosomes ordered (% of total BMs)</th>
<th>Chromosome abnormality rate (per 100 BM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCR</td>
<td>55%</td>
<td>20</td>
</tr>
<tr>
<td>MCA</td>
<td>85%</td>
<td>16</td>
</tr>
<tr>
<td>MCF</td>
<td>95%</td>
<td>21</td>
</tr>
</tbody>
</table>

MCF: Post-guidelines

| | 47% | 21 |

Equate to a reduction of ~$600,000 costs
Celiac Disease Serology Algorithm

Celiac Disease Serology Cascade
- Immunoglobulin A (IgA)

Normal IgA
- Anti-TTG, IgA

Zero IgA
- Interpretive report includes:
 - Immunoglobulin A (IgA)
 - Anti-TTG, IgG
 - Anti-deamidated gliadin, IgG
 - Interpretive comment

Low IgA
- Anti-TTG, IgA and IgG
- Anti-deamidated gliadin, IgA and IgG

Selective IgA Deficiency
- Anti-TTG, IgG
- Anti-deamidated gliadin, IgG

Laboratory-Driven Algorithm:
- One order is placed by the clinician
- The patient undergoes a single blood draw
Celiac Disease and Test Utilization
Serology Reflex Results (5/2010-12/2013)

Celiac Disease Serology Cascade
- Immunoglobulin A (IgA)

n=69,577 (97.5%) n=270 (0.4%)

Anti-TTG, IgA

n=526 (0.8%) n=1231 (1.8%)

Negative for all serologies n=1432 (93.5%)
Positive for ≥1 serology n=100 (6.5%)

Negative for all serologies n=220 (41.8%)
Positive for ≥1 serology n=306 (58.2%)

Selective IgA Deficiency

n=67820 (97.5%) n=69,577 (97.5%)

Interpretive report includes:
- Immunoglobulin A (IgA)
- Anti-TTG, IgA and/or IgG
- Endomysial antibodies, IgA
- Anti-deamidated gliadin, IgA and IgG
- Interpretive comments

n=228 (84.4%)
Positive for ≥1 serology n=42 (15.6%)
Laboratory-Driven Algorithms

<table>
<thead>
<tr>
<th>Comparison of Testing Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Celiac Disease Serology Cascade: Weighted Average Price</td>
<td>$ 67.60</td>
</tr>
<tr>
<td>Total package – if ordered a la carte</td>
<td>$ 515.00</td>
</tr>
</tbody>
</table>
Thyroid (TSH) algorithm, internal use

• 2 week snapshot internal orders (inpatient and outpatient)
 • Thyroid (TSH) cascade
 • 2413 ordered (88% normal TSH, no further testing)
 • 649 stand-alone Free T4 over same period
Implementing algorithms

• Pathologist-driven
 • One on one or one on group discussions
 • Usually lower volume but high cost
 • Achieve consensus but don’t worry about exceptions

• Genetic counselor-driven
 • Sell high-impact clinical groups (neuro, med genetics, peds)
 • Hire and train the staff

• Laboratory-driven
 • Embed in orders system
 • Weight the algorithm in searches or short-cuts
 • Information on algorithm components
Tests per discharge metrics

• Why worry about inpatient test utilization?
 • Generally high volume, low cost tests
 • Capitated reimbursement, no money
 • Those little tests add up
 • ~ $800 per inpatient admission (J Hosp Med 2007;2:150-7)
• Inpatient testing practices are *highly variable*
Tests per discharge metrics
University HealthSystem Consortium

Tests per discharge for UHC Hospitals (2012 YTD)
Inpatient utilization strategies of top performers

• Review order sets and order short-cuts
• Curtail standing orders
• Implement order entry decision support rules
• Provide cost information at time of order entry
Order sets

• Institutionally approved grouping of lab orders
 • May include non-lab orders
 • MCR definition = group of med and non-med orders around procedure or medical condition
• One click = multiple lab orders
• Conventional wisdom: Order sets encourage overutilization lab services
Order sets

• MCR review 25 (out of 300) order sets
• Median lab orders 3 (0-23)
 • Orders sets > 5 require provider select desired tests
• Most order sets for surgical procedures
 • 2-5 lab orders, one time post-op day 1
 • Few utilization opportunities identified
• Medical order sets (sepsis, stroke, NSTEMI)
 • Many (15-25) lab orders
 • Native state lab orders “deselected”
 • Provider picks tests necessary
 • Functions as ordering short-cut
Ordering short-cuts

• Function of electronic ordering systems
• Provider (individual or group) convenience
• Hot keys or buttons, division buttons, order sets
• Often no institutional review (regulatory req)
Ordering short-cuts

Division Orders ➔ Internal Medicine ➔ AM Labs
Unchecked Albumin (Blood) 8436
Unchecked Alkaline Phosphatase (Blood) 8340
Unchecked Alanine Aminotransferase (ALT) (Blood) 8362
Unchecked Aspartate Aminotransferase (AST) (Blood) 8360
Unchecked Bilirubin Total (Blood) 81785
Unchecked Calcium, Total (Blood) 8432
Unchecked CBC with Differential-No Alerts (Blood) 81303
Unchecked CBC with Differential (Blood) 9109
Unchecked CBC without Differential (Blood) 8035
Unchecked Creatine Kinase (CK) (Blood) 8336
Unchecked Electrolyte Panel (Blood) 87972
Unchecked Magnesium (Blood) 8448
Unchecked Phosphorus (Inorganic) (Blood) 8408
Unchecked Prothrombin Time (Blood) 9236
Unchecked Activated Partial Thromboplast Time (Blood) 9058

Anemia Labs
Unchecked Direct Coombs (Blood) 9008
Unchecked Haptoglobin (Blood) 9168
Unchecked Lactate Dehydrogenase (Blood)
Unchecked Iron Studies

Iron Studies
Unchecked Ferritin (Blood) 88153
Unchecked Iron (Blood) 80201
Unchecked Iron and Total Fe Binding Cap (Blood) 34624
Unchecked Morphology Evaluation (Blood) 9184
Unchecked Vitamin B12 and Folate (Blood) 84073
Unchecked Thiamin (Vitamin B1) (Blood) 81019
HIM AM rounds lab order button study

- Eliminate albumin, CK, Phos, and Mg from daily AM rounds HIM division order button
- Test volumes 90 days before and after
- Volumes from 5 HIM general care units

<table>
<thead>
<tr>
<th>Test</th>
<th>Volume pre (90 days)</th>
<th>Volume post (90 days)</th>
<th>% change IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>814</td>
<td>785</td>
<td>- 4%</td>
</tr>
<tr>
<td>CK</td>
<td>283</td>
<td>242</td>
<td>- 14%</td>
</tr>
<tr>
<td>Magnesium</td>
<td>3987</td>
<td>4035</td>
<td>+1%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>2247</td>
<td>2033</td>
<td>- 10%</td>
</tr>
<tr>
<td>ELPN</td>
<td>10674</td>
<td>10482</td>
<td>- 2%</td>
</tr>
<tr>
<td>Alk phos</td>
<td>1289</td>
<td>1348</td>
<td>+5%</td>
</tr>
<tr>
<td>AST</td>
<td>1457</td>
<td>1504</td>
<td>+3%</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>1240</td>
<td>1255</td>
<td>+1%</td>
</tr>
<tr>
<td>Calcium</td>
<td>1283</td>
<td>1267</td>
<td>- 1%</td>
</tr>
</tbody>
</table>
Ordering short-cuts

• Summary order sets & short-cuts
 • Order sets may or may not be an issue
 • Ordering short-cuts likely are an issue
 • Editing ordering short-cuts can lead to moderate gains in utilization
 • Gain/value of eliminating tests from panels or order short-cuts in electronic systems may not match that observed for paper orders
 • Who can make an ordering short-cut?
 • Who provides input and oversight?
Standing orders

- Order for labs in effect multiple days
- Functionality varies by electronic order system
- Magnitude of problem function of
 - Electronic order system functionality
 - Institutional culture
- SFGH study (2002-04)
 - Ban on standing orders 2003 (non-ICU)
 - Inpatient test volume year before and after
 - 12% reduction in total inpatient test volume and average tests/day
 - Am J Clin Pathol 2006;126:200-6
Standing orders

• Are standing orders a problem?
 • Perform measurement of rate
 • Define institutional policy around standing orders
 • Some tests (bedside glucose, PTT, INR) justify standing orders or orders tied to medication

• Electronic ordering system functionality can be difficult to change
Order entry decision support rules

• 3 types of inpatient decision support rules
 • Never tests (hard stop)
 • Do not contribute to decisions during inpatient stay
 • Often expensive and/or send-out
 • Examples: Thrombophilia w/u, many genetic tests
 • Frequency-limited tests (generally hard stop)
 • Repeat result (regardless of value) not needed
 • Examples: C. Diff, HbA1C, lipid panel, Hep C
 • Redundant normal values (often soft stop)
 • Rule triggered by previous result and anticipated Δ
 • Examples: iCAL, Mg, CBC with or without diff
Order entry decision support rules

• Never tests
 • Review top send-outs
 • Opinions/consensus of lab leadership
 • Opinions/consensus of medical staff leadership

• Frequency-limited tests
 • Review literature and other institutions experience
 • Opinions/consensus of lab/medical leadership
 • Association for Clinical Biochemistry & Lab Medicine (UK) National Minimum Retesting Interval Project

• Redundant normal values
 • Need data on ordering patterns and results
 • Hardest to do, often highest volume
Order entry decision support rules

• “Soft” repeat BNP order rule reduced inpatient BNP orders 21% ($94,000 direct savings)
 BMC Med Inform Decis Mak 2013;13:43

• ~70% soft redundant order pop-ups acted upon at one academic med center, ~30% over-ridden
 Am J Med 1999;106:144-50

• “Hard” stops should reduce volume > 50%
 • 1,25 dihydroxy vit D
 • CK-MB
Mayo order entry decision support pilot

• Ionized calcium rule development
 • Off-line manual test = more labor
 • Culture of repeat measurement in ICU
 • Effective interventions done elsewhere

• Serum magnesium (Mg) rule
 • Shockingly high volume (3rd highest inpatient test)
 • Culture repeat ICU measurement
 • Effective intervention elsewhere

• NT Pro BNP
 • Higher cost immunoassay
 • Guidelines for hospital measurement
Mayo order entry decision support pilot

• Ionized calcium rule development
 • ~ 3000 orders/month (3 month study)
 • ~ 800 incidences/mo repeat iCAL within 24 hrs
 • 3/4 both values normal range
 • 1/4 first normal second abnormal
 • 61 incidences first value ≥ 4.8 mg/dL and second value < 4.0 mg/dL (criteria for Ca replacement)
 • Chart review indicated all 61 had exclusion criteria
 • Renal failure
 • Heart rhythm abnormality
 • Massive transfusion
 • Apheresis
iCAL order entry decision rule

Duplicate Ionized Calcium Order

Previous Ionized Calcium (4.7 mg/dl) was within normal reference interval on replaceDate1.
Repeat measurement is NOT indicated except in the following clinical scenarios:

- Dialysis or severe renal failure (eGFR <30)
- Abnormal heart rhythm
- Following multiple/massive blood transfusions
- During or post-apheresis

Replacement of calcium in critically ill patients with normal or moderately low ionized calcium levels is not associated with improved outcome. Repeat Serum Ionized Calcium measurement is not indicated more than every 24-48 hours in most hospitalized patients with normal levels.

How to Proceed:

To cancel the order select "YES" below. Then select the order from the patient's order profile and D/C (cancel) the order.

To proceed with the order, enter the indication in the text box below, and then click on "NO".

If this alert is an error or you have questions send an email to micscds@mayo.edu

Click "YES" to cancel, click "No" and enter reason to proceed with order.

Please enter reason
Mayo order entry pilot preliminary results

- iCAL, Mg, NT pro BNP rules implemented in 3 general care and 4 ICU areas April 2014

- Test volumes 90 day before and after rule

<table>
<thead>
<tr>
<th>Test</th>
<th>Volume pre (90 days)</th>
<th>Volume post (90 days)</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>iCAL</td>
<td>2626</td>
<td>1418</td>
<td>-46%</td>
</tr>
<tr>
<td>MG</td>
<td>7692</td>
<td>4867</td>
<td>-37%</td>
</tr>
<tr>
<td>NT Pro BNP</td>
<td>345</td>
<td>264</td>
<td>-23%</td>
</tr>
<tr>
<td>ELPN</td>
<td>4649</td>
<td>4867</td>
<td>+ 5%</td>
</tr>
<tr>
<td>PHOS</td>
<td>5531</td>
<td>3995</td>
<td>-28%</td>
</tr>
<tr>
<td>Alk phos</td>
<td>1424</td>
<td>1421</td>
<td>< -1%</td>
</tr>
<tr>
<td>AST</td>
<td>2117</td>
<td>2033</td>
<td>-4%</td>
</tr>
</tbody>
</table>

- Number of times rule fired first 90 days: 4225 (of 171,397 qualifying orders)

- Number of pop-up overrides: 2624 (62%)
Order entry decision support rules

• Summary decision support rules

• 2 of 3 can be done with minimal data and IT
 • Never and frequency-limited
 • Higher impact (volume) tests will require exceptions and be more difficult

• Caveats and pitfalls
 • Institutional culture, provider time
 • Achieving consensus around rules
 • Decision-making authority
 • Top leadership must endorse decision-making body
 • Decision-making body must include lab
Cost information to providers

- Controlled trial of displaying costs for tests
 - “Cost” displayed CLFS reimbursement
 - 35 most common and 35 most expensive inpatient tests randomized
 - 30 tests cost displayed, 31 control (no cost)
 - Tests/patient day 3.72 to 3.40 cost arm
 - Tests/patient day 1.15 to 1.22 control arm
 - By chance more expensive tests randomized to control arm
 - 10% drop in total fees and fees/patient day
 - Study could not determine effectiveness at reducing expensive test ordering

JAMA Intern Med 2013;173:903-8
Cost information to providers

• What does a test cost?
 • Clin lab fee schedule reimbursement (published)
 • Lab total cost to provide service
 • Direct variable cost
Cost information to providers

• Example, serum ionized calcium

• NICU/ICU question
 • Serum iCAL vs stat whole blood (ABG) iCAL?
 • CLFS reimbursement: $7.09 serum = $7.09 whole blood iCAL

• Lab total cost for test
 • Direct and indirect, \textit{fixed} and variable
 • Serum ionized calcium: \textasciitilde$4
 • Whole blood ionized calcium: \textasciitilde$9
Cost information to providers

• Fixed costs fixed over relevant range

• What is the direct variable cost for each test?
 • Includes avg effort for phlebotomy and transport
 • Includes lab labor/number tests in tube
 • Includes reagents/supplies for that test

• Serum ionized calcium
 • ~$4

• Whole blood (ABG) ionized calcium
 • ~$1

• Different costs = different practices
Cost information to providers

• Alternative to calculating direct variable costs
 • $ DVC $0-10
 • $$ DVC $10-100s
 • $$$ DVC $100s-1000s

• Advantages
 • Avoid false assumptions about low cost tests
 • Much easier

• Disadvantages
 • No evidence cost information curtails use of expensive or non-routine tests
Cost information to providers

• Summary cost info

• Direct variable cost necessary to drive good decisions for high-volume in-house tests

• Overall more useful for send-out tests
 • Analytic (reference lab) cost most or all of cost of providing test
 • Straight-forward cost determination
Conclusions

• Approaches to laboratory utilization
 • Utilization committee
 • Send-out formulary
 • Algorithms and reflex testing
 • Review order sets, nonstandard (not CMS) panels and profiles
• Report cards/audits
• Consultative services
Conclusions

• Costs for “routine” inpatient lab testing add up
• Know how your practice stacks up (UHC)
• Ordering short-cuts
 • They will pop up everywhere
 • Go to the source (oversight/policy)
• Ordering rules/decision support
 • High value activity
 • Never and frequency-limited easiest
 • Requires defined oversight body
 • Higher volume tests require more work
• Cost information to ordering providers
 • Beware unintended consequences
Questions?