Clinical Utility of Hematological Parameters to Predict Sepsis Prior to Clinical Presentation in Medical Intensive Care Unit Patients

Introduction: Sepsis is characterized by pathogen invasion into the bloodstream and the host’s response to this invasion. Early detection of sepsis allows for rapid initiation of therapy, decreases morbidity and mortality, and reduces healthcare expenses.

Objective: To investigate the diagnostic utility of hematological parameters to predict the onset and severity of sepsis in Medical Intensive Care Unit (MICU) patients prior to clinical presentation of systemic inflammatory response syndrome (SIRS).

Methods: This retrospective cohort study employed 125 MICU patients with SIRS. These patients were identified by software that scans electronic medical records and alerts investigators when a MICU patient meets SIRS criteria. Several hematological parameters were quantitated on the Sysmex XE 5000 analyzer from specimens collected 24 or 48h prior to the patient meeting SIRS criteria. Procalcitonin was quantitated in residual plasma using the Vidas B.R.A.H.M.S® PCT assay (bioMerieux, Inc). The diagnoses of non-infectious SIRS, sepsis and sepsis severity were blindly adjudicated by 2 MICU physicians as: SIRS (n=70) and Sepsis (n=55; severity: sepsis n=7, severe sepsis n=22, and septic shock n=26). Receiver operator characteristic (ROC) curves were generated to evaluate the diagnostic utility of these hematological parameters to predict sepsis.

Results: Areas under the ROC curves (AUC) for each parameter to predict sepsis or severe sepsis/septic shock are listed in table 1. Four hematological parameters to predict sepsis.

Predictor

<table>
<thead>
<tr>
<th>Sepsis vs. No Sepsis</th>
<th>Early/No Sepsis vs. Severe Sepsis and Shock</th>
<th>AUC</th>
<th>95% CI</th>
<th>P value</th>
<th>AUC</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin (PCT)</td>
<td>0.67</td>
<td>0.57-0.76</td>
<td><0.001</td>
<td>0.69</td>
<td>0.60-0.79</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>White Blood Cell Count (WBC)</td>
<td>0.7</td>
<td>0.61-0.79</td>
<td><0.001</td>
<td>0.68</td>
<td>0.58-0.77</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Red Blood Cell Count (RBC)</td>
<td>0.52</td>
<td>0.42-0.62</td>
<td>0.74</td>
<td>0.53</td>
<td>0.43-0.64</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Immature Granulocyte Percentage (IGP, %)</td>
<td>0.60</td>
<td>0.50-0.70</td>
<td>0.07</td>
<td>0.61</td>
<td>0.51-0.71</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Granulocyte Count (G /L)</td>
<td>0.66</td>
<td>0.57-0.76</td>
<td>0.001</td>
<td>0.66</td>
<td>0.57-0.76</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Neutrophils (Neut %)</td>
<td>0.72</td>
<td>0.63-0.81</td>
<td><0.001</td>
<td>0.74</td>
<td>0.65-0.83</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Absolute Neutrophil Count (ANC)</td>
<td>0.71</td>
<td>0.62-0.80</td>
<td><0.001</td>
<td>0.71</td>
<td>0.62-0.80</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Platelet Count</td>
<td>0.52</td>
<td>0.41-0.62</td>
<td>0.74</td>
<td>0.52</td>
<td>0.42-0.63</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: We observed good correlation between platforms for the V, VII and X factors. For Siemens BCS XP, matrix of factor II is of human origin, providing better performance and low correlation with Stago platform on which the matrix is a mixture of human serum and bovine plasma.

Plasma cell myeloma with rare presentation

Background: Plasma cell myeloma is a multifocal plasma cell neoplasm associated with monoclonal immunoglobulin called M-protein in serum and/or urine. The disease spans a clinical spectrum from asymptomatic to aggressive forms and due to deposition of abnormal immunoglobulin chains in tissues. The diagnosis is based on a combination of pathological, radiological and clinical features. Over 90% of cases of multiple occur in patients 50 years old or older. The median age at diagnosis is 70 years. Only 2% of cases begin before the age 40.

Objective: The objective of this case is to bring awareness to atypical presentations of plasma cell myeloma that may hinder its diagnosis. In the present case the difficulty in diagnosis is due to the atypical age at onset, absence of monoclonal immunoglobulin in the protein electrophoresis, hypocellularity of bone marrow without typical elements of the pathology, and presence of histiocytes and plasma cells with cyttoplasmic inclusions.

Clinical case: CLMS, 38 year old woman, admitted to Hospital Paulistano due to metrorrhagia and pelvic pain. CBC: hemoglobin 5.6 g/dL, platelets: 86,000/ mm³. Radiographic study: lytic lesions in the hip. Blood marrow count : hypocellularity of all myeloid cells; 1.6% of plasma cells with abnormal morphology: presence of cells with crystallized cytoplasmic immunoglobulin with a lamellar pattern. Protein electrophoresis with absence of M-protein. Blood Immunofixation with presence of monoclonal kappa without correspondence with heavy chain IgA, IgG or IgM. Urinary Immunofixation: presence of monoclonal kappa without correspondence with heavy chain IgA, IgG or IgM. Bone marrow biopsy with immunohistochemistry report: CD68 clone PG-M1 positive in numerous histiocytes with crystallized cytoplasmic immunoglobulin. Kappa positive in most plasma cells with large cytoplasm. CD 13 positive in about 40-50% of cells. FDG-PET: hypermetabolism in the iliac crest. Increased FDG uptake in the bone that corresponds to bone marrow activity.

Conclusion: The enlarged lamellar cytoplasm of plasma cells and histiocytes, probably correspond to the cytoplasmic accumulation of immunoglobulin. The identification of these cells as plasmocytes, associated with the immunohistochemistry, FDG-PET and blood and urinary immunofixation allowed the diagnosis of Plasma Cell Myeloma of Kappa chain.
A-283

Validation of Thrombin-Antithrombin III Complex by Enzyme-Linked Immunosorbent Assay in Humans, Non-Human Primates, and Canine Citrated Plasma to Support Pre-clinical and Clinical Coagulation Studies

C. Phanthalangsrej, J. Stejskal, R. Giovannelli, J. Wisniewski, S. Ramaiah, 1Pfizer, Groton, CT, 2Pfizer, Andover/Cambridge, MA

Background: The conversion of prothrombin into active thrombin is a significant event within the coagulation cascade. Thrombin is primarily inhibited by antithrombin (ATIII) in which results in a stable inactive protease/ inhibitor complex. The concentration of thrombin-antithrombin III complex (TAT) can be measured, and represents a sensitive clinical biomarker for the diagnosis of thrombotic disease in the coagulation cascade.

Methods: Siemens Enzygnost® TAT micro immunoassay (Catalog #:OWMG15) was validated in human, non-human primate (NHP), and canine citrated plasma. The concentration of TAT was measured in-vitro quantitatively through a sandwich enzyme immunoassay and used two different antibodies directed against thrombin and ATIII, respectively. The first incubation step consists of TAT binding to peroxidase-conjugated antibodies that are attached to the surface of the microtitration plate against thrombin. The second incubation step consists of a reaction in which the enzyme-conjugate antibodies are bound to the free ATIII determinants. Any unbound conjugates and excess enzyme-conjugated antibodies are removed by a series of washes after each incubation. The enzymatic reaction between hydrogen peroxide and chromogen is stopped by the addition of diluted sulfuric acid. This results in a color intensity change which is proportion to the concentration of TAT. TAT concentrations are measured photometrically through the SPECTramax 384plus reader within the kit standard concentration range of 2 to 60 μg/L. For higher TAT concentrations, the sample was diluted using Sekisui TAT deficient material (Catalog #: 203) for humans and normal TAT levels (<4 μg/L) for NHP and canine.

Results: Intra-assay was established through 5-10 replicates and the %CV was ≤46 for human, ≤10.8 for NHP, and ≤8.3 in canine. Inter-assay precision was established through a minimum of 3 separate assay runs and the %CV was ≤1.50 for human, ≤15.5 for NHP, and ≤11.4 in canine. The limit of blank was established by analyzing 10 replicates and determined to be 0.135 μg/L for human and 1.3 μg/L for NHP. The lower limit of quantification was determined as 2.36 μg/L with a %CV of 11.28 in human and 2.10 μg/L with a %CV of 15.7 in NHP. The upper limit of quantitation was determined as 60.15 μg/L and %CV of 4.58 in human and 60.0 μg/L and %CV of 13.4 in NHP. Dilutional linearity was determined using samples near the upper limit of the assay calibration curve, and spiked recovery was determined using samples spiked with several concentrations of kit calibrators. All results were within 20% of the expected value. Sample freeze/thaw stability was performed using samples with concentrations near the lower and middle limits of the assay calibration curve and consisted of 4 freeze/thaw cycles. All results were within 20% of the expected value. Sample freeze/thaw stability was performed using samples spiked with several concentrations of kit calibrators. All results were within 20% of the expected value.

Sample stability was performed for human and canine samples frozen at -80 °C. Human samples were stable up to and including 3 months, and canine samples were stable up to and including 2 weeks.

Conclusion: All outlined criteria for the validation of TAT in human, NHP, and canine were met and used to support pre-clinical and clinical coagulation studies.

A-284

Inevitable is fasting time for coagulation laboratory tests - Preliminary evaluation

G. Lima-Oliveira, 1G. L. Salvagno, 2G. Lippi, 2E. Danese, 2G. Poli, 2M. Gelati, 2M. Montagnana, 2C. Recchi, 2M. Saggiono, 2G. Picheth, 2G. C. Guidi. 1Federal University of Parana, Curitiba, Brazil, 2University of Verona, Verona, Italy, 3University of Parma, Parma, Italy

Background: Errors in the preanalytical phase generate further work or additional investigation that may cause unnecessary procedures for patients. This study was aimed to evaluate the inevitability of fasting time for coagulation laboratory tests.

Methods: The first blood sample was collected from 10 healthy volunteers at fast (12h). Immediately after blood collection, the volunteers consumed a standardized meal (Table 1). The following blood samples were collected 1, 2 and 4 hours after the end of the meal. Each phase of sample collection was standardized, including use of needles and vacuum tubes of the same type and lot. Coagulation tests included the following: activated partial thromboplastin time (aPTT sec), prothrombin time (PT sec), fibrinogen (mg/dL), antithrombin III (AT%), protein C (%), and protein S (%).

The significance of differences between samples was assessed by paired Student’s t-test after checking for normality by the D’Agostino-Pearson omnibus test. The level of statistical significance was set at $p < 0.05$.

Results: One hour after food intake, variations were observed for PT (-2.3%, P=0.45) and AT (-1.9%, P=0.04). Two hours after meal differences were observed for aPTT (-4.0%, P=0.03) and PT (-3.8%, P=0.57). Statistically significant increases could be observed four hours after the meal only for AT (3.0%, P=0.02). The results of fibrinogen, PC and PS were not influenced by the meal at any time points.

Conclusion: Significant variations of aPTT, PT and AT coagulation laboratory tests after a standardized meal were observed. In conclusion these preliminary outcomes had shown that the fasting time should be carefully considered when performing these tests, in order to prevent spurious results and reduce laboratory errors especially in the therapeutic monitoring.

A-285

Mean platelet volume in patients with pre-eclampsia

Background Larger platelets have greater haemostatic efficiency than smaller ones by producing larger amounts of vasoactive and prothrombotic components. Mean platelet volume (MPV) is a useful marker indicating alteration of platelet activity which shows association with various inflammatory diseases. Pre-eclampsia (PE) is a disease characterized by endothelial damage, elevated intravascular platelet activation while increased MPV in the second of third trimester of pregnancy has been reported. The aim of this study is to evaluate possibility of MPV as a marker of recovery from PE or eclampsia after delivery.

Methods Twenty-one pre-eclamptic and one eclamptic women who gave birth at Kyung Hee Medical Center during January 2011 to June 2012 were include in the study. The results of white blood cells (WBC) count, hemoglobin (Hb) concentration, platelet (PLT) count, and MPV were obtained using an automated hematologic analyzer, Advia 2120 (Siemens Diagnostics, Tarrytown, NY, USA). Medical records were analyzed retrospectively. Postpartum laboratory data of 16 patients with existing serial results of the day of delivery, a day after and two days later were analyzed retrospectively.

Results Nineteen patients had preterm delivery and three had term delivery. Major comorbidities of diabetes mellitus (DM) and myoma were presented in eight patients. Both MPV and platelet count were shown to have decreasing tendency over the observed period, although statistical significance was not shown ($P=0.152$ and $P=0.327$, respectively). A ratio of MPV/PLT was slightly increased without statistical significance ($P=0.222$). Longitudinal serial data of six postpartum days in 5 pre-eclampsia women showed definitely decreasing tendency.

Conclusions MPV has shown decreasing tendency during postpartum periods following PE or eclampsia. These results demonstrate reduced platelet activity and decreased maternal intravascular systemic inflammation after resolution of pregnancy. This study provides evidence that MPV is able to reflect the recovering state from PE or eclampsia in postpartum periods. Most of the previous studies were focused on increased MPV at prenatal period of PE. Meanwhile, we carefully suggest MPV could be supportive surrogate marker as recovery from inflammatory state after delivery in PE based on these results of our study. Large scale prospective studies are required to affirm these findings and elucidate the underlying mechanism to induce changes of MPV in PE or eclampsia.
A-286

Capillary electrophoresis identification and laboratory evaluation of a complex protein finding in a patient serum

DASA, RIO DE JANEIRO, Brazil

Background: A 74-years-old female was evaluated by her primary care physician, who ordered basic routine tests. All results were within the reference intervals, except for the serum electrophoresis, which revealed two unusual intense bands expressed in the gamma region.

The aim of our study was to better characterize the finding according to the guidelines in order to provide more information to the physician.

Methods: Laboratory analysis was conducted by performing a high resolution capillary electrophoresis using the Capillaryl® (Sebia) for protein identification. In order to define abnormal protein type, immunofixation of Immunoglobulins and κ and λ light chain, antiserum was performed using agarose gel and reagents with the Hydrasys® Electrophoresis System (Sebia). Subsequently, the direct measurement to define the monoclonal proteins and light chains was performed by nephelometry using BN II® (Siemens Healthcare Diagnostics).

Results: Immunofixation with Immunoglobulins and κ and λ light chain antiserum showed the presence of two monoclonal bands against Igk and an Igκ compatible with a bicalonal gammopathy. The direct nephelometric measurement revealed a normal Igκ level of 1010 mg/dL, a high IgA level of 849 mg/dL, a normal IgM level of 60.5 mg/dL, a high level of κ light chain level of 41.0 mg/dL and λ light chain level of 228.0 mg/dL. The κ/λ ratio of 1.82 was within the reference interval.

Conclusion: In this particular case, the initial diagnosis was apparently a polyclonal distribution, and although not initially requested, the use of complementary tests like quantification and immunological identification, by immunoglobulins profile, were important to help the physician to streamline the diagnosis, monitor and stratify the risk of this bicalonal pathology.

A-287

Mean platelet volume (MPV) in patients with chest pain

G. Lobreglio, F. Sicuro, M. Renis. Azienda ASL Leccse Presidio Ospedaliero Vito Fazzi, Lecce, Italy

BACKGROUND AND OBJECTIVES. Variation in platelets size is indicative of changing the level of immune, inflammatory and volume (MPV) is directly related to platelet activation in vivo, which plays a central role in the pathogenesis of many vascular diseases. Recent studies have shown conflicting results about the relationship between increasing MPV and cardiovascular disease. This work was aimed at investigating if MPV is higher in patients with acute myocardial infarction compared to those with a mean difference of 0.8 fL (95% CI 0.6 – 1.1; P < 0.05). These results show that MPV is higher in patients with acute myocardial infarction compared to those with other cardiovascular diseases or non-cardiac chest pain, owing to platelets activation in acute coronary syndromes.

METHODS. The study included 3927 consecutive patients with acute non traumatic chest pain presenting to the emergency department of a medium-sized hospital over a period of 30 months, from January 2011 to June 2013. The median age of study participants was 61 years (range, 47 to 93); 3051 (51.5%) were male, 2876 (48.5) were female. EDTA anticoagulated whole blood and serum samples were obtained on admission from all patients. According to the Universal Definition of Myocardial Infarction, AMI was diagnosed in patients showing a rise and/or fall of cardiac troponin I (cTnI) above the diagnostic threshold for MI (0.30 ng/mL), typical changes of electrocardiogram, imaging evidence of new loss of viable myocardium or presence of an intracoronary thrombus. MPV was measured in the course of complete blood count with Sysmex XE-2100 automated hematol of use the Hydro Dynamic Focusing and Direct Current Detection. cTnI was measured by Architect i System with chemiluminescent microparticle immunoassay (CMIA) from Abbott Laboratories.

RESULTS AND CONCLUSIONS. AMI was diagnosed in 652 (11%) patients with chest pain (364 men, 288 female). Mean MPV measured at hospital admission was 11.2 ± 0.7 femtoliter (fL) in patients with AMI and 10.4 ± 0.5 fL in all other subjects, with a mean difference of 0.8 fL (95% CI 0.6 – 1.1; P < 0.05). These results show that MPV is higher in patients with acute myocardial infarction compared to those with other cardiovascular diseases or non-cardiac chest pain, suggesting a substantial role of platelets activation in the formation of the thrombus that occludes the culprit coronary arteries. Therefore, MPV is a potentially useful biomarker of platelet activity in the setting of coronary atherothrombotic events.

A-288

Targeted Metabolomic Profiles Are Strongly Correlated With Metabolic Alterations In Patients With Sickle Cell/Beta Thalassemia Disease

I. Papassotiriou1, F. Panetos2, T. Livadara2, A. Tzivaras2, E. Voskaridou4.
1Department of Clinical Biochemistry, “Aghia Sofia” Children’s Hospital, Athens, Greece; 2Analytical Chemistry Laboratory, Bioiatriki Athens, Greece; 3Blood Transfusion Center, “Aghia Sofia” Children’s, Athens, Greece; 4Thalassemia Center, “Laikon” General Hospital, Athens, Greece

Background: The complex pathophysiology of Sickle Cell Disease (SCD) makes unlikely that a single therapeutic agent will prevent or reverse all SCD complications. Metabolomic analysis might help in the characterization of the endogenous and exogenous effects of potential new treatments. Metabolites are small molecules that are chemically transformed during metabolism and provide a functional readout of cellular state. Metabolites serve as direct signatures of biochemical activity and are therefore easy to correlate with phenotype. The metabolome is typically defined as the collection of small molecules produced by cells and offers a window for interrogating how mechanistic biochemistry relates to cellular phenotype. There are very few reports providing comprehensive measurements of metabolites present in blood and almost no reports on metabolites changes associated with SCD. In this context we aimed to detect and to quantify targeted metabolites’ abnormalities in patients with Sickle Cell/beta thalassemia disease (HbS/Bthal) and their implication in pathways that might be of interest to prevent vaso-occlusion and/or to monitor the effects of new therapies on SCD.

Patients and Methods: Thirty adult patients with HbS/Bthal were enrolled in the study, while 20 apparently healthy individuals matched for age served as controls. Targeted metabolome analyses based on amino acids and carnitines were performed after extraction from dry blood spots (DBSs) on filter paper using High Performance Liquid Chromatography followed by tandem Mass Spectrometry (LC/MS/MS Systems, Framingham, MA, USA) with reagents provided by Chromsystems Instruments & Chemicals, Germany. The injection volume was 10 μL and the analysis lasted ca. 2 min.

Results: The main results of the study showed that: a) fifty metabolites were separated in patients and controls samples, b) mapping the results of analyses, patients with HbS/Bthal compared to controls had 17 metabolites with significantly lower concentration, 10 metabolites with comparable concentration and 23 metabolites with significantly higher concentration, c) L-arginine and L-ornithine concentrations were significantly lower in patients HbS/Bthal compared to controls, 9.3±2.6 vs 14.7±3.7 μmole/L, (p<0.01), and 116.0±15.0 vs 211.2±19.5 μmole/L, (p<0.05) and d) carnitine, acetylcarnitine and propionylcarnitine correlated significantly positively with reticulocyte production index (p<0.001).

Conclusions: Our findings showed significant alterations in whole blood metabolome of patients with HbS/Bthal. Also we demonstrated the very important metabolic abnormality of Nitric Oxide biosynthesis pathway due to the low concentration of the aminoacids serving of substrates in this cycle and disturbances in carnitine and acylcarnitines homeostasis. These abnormalities in the metabolome reflected the hemolysis, inflammatory process and pulmonary hypertension observed in these patients.

A-289

Validation of Fluorescence In Situ Hybridization assay for detection of rearrangements involving the Mixed Lineage Leukemia gene

Background: The Fluorescence In Situ Hybridization (FISH) testing has become an important tool of clinical practice in many laboratories dealing with neoplastic diseases. The FISH is more sensitive than conventional chromosomal analysis because can detect a specific alteration in both dividing and nondividing cells and small population of abnormal cells. Although the performance of the most FISH probes has been evaluated by the manufacturer prior to marketing, they also must be validated prior implementation of assay for clinical use. Clinical laboratories must independently adopt protocols for verify the performance of the assay. Rearrangements involving the Mixed-Lineage Leukemia gene (MLL) represent 10% of abnormalities detected in acute leukemias, which in many cases represent poor prognosis. Thus the rapid identification of these rearrangements is needed to guide prognosis and treatment.
Thrombocytopenia In Children with Malaria

C. E. Lekpo1, W. Ababio2, R. Ansah1, S. Amankwah4, F. A. Botchway5.

1Department of Medical Laboratory, Kwame Nkrumah University Of Science and Technology, Kumasi, Ghana, 2Hematology Department, Korle Bu Teaching Hospital, Accra, Ghana, 3University of Ghana, Accra, Ghana, 4Chemical Pathology Department, University of Ghana Medical School, Accra, Ghana, 5Department of Child Health, Korle Bu Teaching Hospital, Accra, Ghana

Background: The objective of this study was to access the occurrence and severity of thrombocytopenia in children with malaria at the Child Health department of Korle Bu Teaching Hospital between January and June 2013.

Methods: It was a retrospective study, done at the Child Health Department of Korle Bu Teaching Hospital. Data regarding positive cases of malaria were obtained between January and June 2012. Patients were further assessed for thrombocytopenia and its severity. Data were analyzed by Chi square test using SPSS version 13.0.

Results: A total of 131 cases were included in the study with a mean age of presentation of 8 years. Plasmodium falciparum was identified in 119 (90.8%) patients while Plasmodium malariae in 6 (4.5%) patients and Plasmodium ovale in 3 (2.3%) cases or mixed infections of Plasmodium falciparum and Plasmodium ovale. Thrombocytopenia was observed in 93 (71%) cases, of which 40 (41%) cases had mild, 56 (63%) cases moderate and 34 (36%) cases had severe thrombocytopenia. Thrombocytopenia was equally found in falciparum, malariae and ovale infections with no significant difference in severity between falciparum, malariae and ovale species.

Conclusion: Thrombocytopenia is frequently seen in malaria and it is not dependant on type of malaria. In any acute febrile illness, thrombocytopenia should alert one to the possibility of malaria.
Development of An Immunoturbidimetric Assay for the Determination of Haptoglobin Incorporating a New Ready to Use Reagent

S. Baxter, S. McElhatton, M. Rodriguez, J. Campbell, S. FitzGerald. Randox Laboratories Limited, Crumlin, United Kingdom

Background: The primary function of the plasma protein haptoglobin is to bind to free haemoglobin thereby preventing haemoglobin-driven oxidative tissue damage, the renal excretion of iron and the subsequent kidney damage following intravascular haemolysis. The plasma levels of this protein are reduced during episodes of haemolysis and the measurements are used in the diagnosis of haemolytic anaemia. Haptoglobin is also a positive acute-phase protein with immunomodulatory properties, the levels of this protein are elevated in inflammatory, infectious processes and in malignancies. This study reports the development of an assay for the determination of haptoglobin in serum samples that incorporates a new ready to use reagent leading to a simplified procedure and a reduction of handling errors prior to analysis. The assay is applicable to a variety of automated analysers. This is of value for application in clinical laboratories.

Methods: A monoclonal antibody pair (capture and detection) was characterized and optimized for assay development. The capture antibody was coated onto opaque white 96 well plates while the detection antibody was conjugated to horseradish peroxidase (HRP) using standard immunochrometry methods. Antibody coat concentrations and conjugate detection concentrations were systematically titrated to achieve optimal sensitivity and dynamic range. Numerous iterations of coating and blocking buffers were assayed to further enhance assay manufacturability and consistency. Finally, in-process testing of linearity and precision was conducted to ensure robust performance to the end-user.

Results: Initial evaluation assigned 56 weeks real time stability for the reagent. The assay showed a sensitivity of 0.19 g/L and was linear up to 3.66 g/L. Prozone was not observed to a concentration of 4.65 g/L. The within-run precision for levels 0.85 g/L and 2.85 g/L, expressed as %CV, was 1.0% and 1.2% respectively. In the correlation study 95 serum patient samples were tested and the following linear regression equation was achieved: y = 1.03x - 0.04; r = 0.999.

Conclusion: The results indicate applicability of this immunoturbidimetric assay to the determination of haptoglobin in serum samples. The inclusion of a new ready to use reagent leads to a simplified procedure and a reduction of handling errors prior to analysis. This is of value for application in clinical laboratories.
Results: The assay is specific for hepcidin-25, and does not cross-react with either hepcidin-22 or hepcidin-20. Linearity testing was performed over multiple kit lots and demonstrated a linear range of 60-600pg/mL, spanning both normal and disease state levels of hepcidin-25 previously reported. Precision of the assay ranges from 5.0-14.0%CV, with sample recoveries falling between ±20%. The assay was used to test a set of normal and non-hematologic cancer samples. We found that, while a range of hepcidin-25 levels was observed in non-hematologic cancer samples, the assay was able to differentiate between normal and disease state sample populations.

Conclusions: Unlike other hepcidin assays, ours utilizes paired monoclonal antibodies that facilitate the direct detection of hepcidin-25 in a sandwich ELISA configuration. The assay also takes advantage of chemiluminescent detection to improve the sensitivity and stability of signal. Taken together, the data support the utility of this monoclonal-based chemiluminescence sandwich ELISA for the specific detection of hepcidin-25.

A-297

Evaluation of the Newly-Developed Serum Ferritin Measurement System, Point Reader™ and Point Strip™ Ferritin

R. Kubota1, K. Kanamori2, Y. Kawai1, N. Sakai1, K. Shiba1. 1Saitama Prefectural University, Saitama, Japan, 2Bunkyo Gakuen University, Tokyo, Japan.

Background: Serum ferritin is widely measured to evaluate the iron levels in the body. Point Reader™ (USHIO, Tokyo, Japan) and Point Strip™ Ferritin (ASKA, Kanagawa, Japan), a newly-developed serum ferritin measurement system, is based on the principle of immunochromatography. This system measures serum ferritin concentrations in five minutes and may allow detection of the early iron-deficiency. Therefore, the objective of this study was to evaluate the performance of this new system.

Methods: Unidentified residual serum specimens with known ferritin concentrations were used. Serum ferritin concentrations were measured using Point Reader and Point Strip Ferritin according to the manufacturer’s instructions. The absorbance of phosphate buffered saline was measured to ascertain the sensitivity. The reproducibility of the test was determined by taking 8 replicate measurements of the 3 standards that had low, medium, or high levels of ferritin (12.0, 39.7, and 78.8 μg/L, respectively). For the correlation test, serum ferritin was measured using N-assy LA Ferritin (NITTOBO, Tokyo, Japan) on TBA-40FR Accute (TOSHIBA, Tokyo, Japan).

Results: The minimum detection limit of the serum ferritin using Point Reader and Point Strip Ferritin was determined to be 10.0 μg/L. In addition, the measurement range of this system was 10.0-100 μg/L as determined from linearity testing. This system has a 3.8% reproducibility in a low control, 6.3% in a medium control, and 6.1% in a high control. We examined the correlation between serum ferritin concentrations obtained using this system (y) and those obtained using TBA-40FR Accute (x) (n = 107). The linear regression equation was y = 1.07x + 0.84, and the correlation coefficient (r) was 0.956.

Conclusions: Sensitivity and stability of signal. Taken together, the data support the utility of this monoclonal-based chemiluminescence sandwich ELISA for the specific detection of hepcidin-25.

A-298

Mathematical Model-based Estimation of Red Blood Cell Clearance Identifies Low Iron States in Patients with Normal Complete Blood Counts

H. Patel, J. Higgins. Massachusetts General Hospital: Center for Systems Biology, Boston, MA

Introduction The healthy human hematologic system is held in a state of dynamic equilibrium by the carefully regulated processes of (1) cell production, (2) cell maturation in the peripheral circulation, and (3) cell clearance. The resulting steady state is routinely quantified by measurements such as hematocrit (HCT), hemoglobin (HGB), or red blood cell count (RBC). Diseases and other conditions perturbing one of these processes may trigger compensation in the others. For instance, decreasing iron availability will eventually lead to iron deficiency and anemia, but prior to the development of anemia, a decrease in RBC production may be compensated by a delay in RBC clearance. This compensatory delay in clearance will maintain the steady state -- and will also confound our ability to discover the problem because the HCT, HGB, and RBC will remain normal. We hypothesize that an estimate of the rate of the underlying RBC clearance process would serve as a useful screening biomarker of decreasing iron availability, helping to identify seemingly healthy patients whose iron levels are close to abnormal or are already abnormally low. These patients should have iron levels checked and may need to be followed more closely.

Methods We used a mathematical model of RBC population dynamics to infer RBC maturation and clearance rates for patients from routine CBC and reticulocyte counts performed on an Abbott CELL-DYN Sapphire automated hematologic analyzer. We first established a normal range for the estimated RBC clearance threshold, defined the probability of clearance as a function of an RBC’s volume and hemoglobin content. We identified patients whose CBCs were entirely normal according to existing CBC indices but whose RBC clearance thresholds fell below the 5th percentile of the normal range. We then measured ferritin levels for these patients at the time of their entirely normal CBC.

Results We found that among patients with an entirely normal CBC and a low modeled RBC clearance threshold, 5% had abnormally low ferritin levels, and 19% had ferritin levels that were within 5% of the lower limit of the normal range. Low and normal ferritin was 4x more prevalent in this low clearance group than in a control group whose RBC clearance threshold was normal. We also found a statistically significant relationship between the estimated RBC clearance threshold and the ferritin level, with lower clearance threshold associated with a lower ferritin level.

Conclusions Iron deficiency anemia is an early sign of a number of important diseases, such as colon cancer, gastric cancer, celiac disease, and more. Our results suggest that RBC clearance threshold is often reduced, possibly as compensation to maintain desired steady states. This compensation confounds our ability to detect the illness by measuring HCT or HGB. But by using a mathematical model of in vivo RBC population dynamics, we can estimate a patient’s clearance threshold and identify patients likely to have low ferritin levels. These patients would benefit from direct iron level assessment and further revaluation to identify the underlying cause of the decreased iron availability.

A-300

Distribution of hemoglobinopathies and thalassemias in a Northern Alberta population

T. Higgins, J. Rodriguez Capote. DynaLIFEDx, Edmonton, AB, Canada

Background DynaLIFEDx is the sole laboratory performing hemoglobinopathy and thalassemia investigations for a catchment area of 2 million people in northern Alberta. Samples for hemoglobinopathy and thalassemia testing come from physician request, immigration medicals, and red cell exchange programs for sickle cell anemia patients and as a reflex test generated by the presence of a hemoglobin variant noted on HPLC analysis for HbA1c. We wished to know the frequency of thalassemia and hemoglobinopathies in our catchment area.

Methods EDTA-anti-coagulated blood samples were analyzed by high performance liquid chromatography (HPLC) using the β thalassemia program on the Bio-Rad VARIANT II. Hemoglobin variants found on HPLC were analyzed by electrophoresis at alkaline and acid pH. A complete blood count (CBC) and ferritin tests were requested as part of the hemoglobinopathy/thalassemia investigation.

Results 5562 thalassemia and hemoglobinopathy investigation were physician requested, 1054 HBS screens were requested and 702 hemoglobin variants fortuitously found on HbA1c analysis were analyzed in the period January 1, 2013 to December 31, 2013. 3438 were interpreted as “normal” and 532 were classified as iron deficient.
on the basis of their hematology indices (hemoglobin >120g/L, mean cell volume >80fL), absence of a hemoglobin variant, replete iron status and calculated Mentzer Index and Discriminant Factor. 322 and 370 were classified as α or β thalassemia trait respectively. 357 were classified as S trait, 121 as E trait, 63 as D Punjab trait and 62 as C trait. 22 were classified as Homozygous S, 4 as homozygous HBE and 2 as homozygous HBC and 8 as SC disease. 10 were classified as αβ thalassemia trait and 11 as H disease. The remainder was classified as unusual hemoglobin variant or thalassemia.

Conclusion: There is a wide diversity of hemoglobinopathies found in northern Alberta. 11% of the hemoglobinopathies were found as a reflex to HbA1c testing.

A-301

Pediatric Reference Intervals for New Reticulocyte and Platelet Parameters

M. O’Leary1, P. Horn2, B. Ward3, P. Steele2, D. Wright4. 1Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, 2Cincinnati Children’s Hospital and University of Cincinnati, Cincinnati, OH, 3Cincinnati Children’s Hospital, Cincinnati, OH, 4Abbott Diagnostics, Santa Clara, CA

Objective: Advances in algorithm development for the Abbott CELL-DYN Sapphire has introduced several new red blood cell parameters describing cell-by-cell size and hemoglobin content for circulating reticulocytes (MCVr, MCHr, CHCr). Reported clinical applications include monitoring RBC production kinetics, distinguishing anemia of chronic disease from iron-deficiency anemia (IDA), and detecting pediatric IDA and erythropoietin-associated functional iron deficiency. Additionally, the reticulocyte channel measures the percentage of platelets that contain residual RNA, reported to correlate with megakaryocytic activity. Potential applications for reticulated platelet (rPLT) values include distinguishing production from consumption and predicting recovery in thrombocytopenic patients. The objective of this study was to determine reference intervals for five pediatric age groups.

Methods: 762 K3-EDTA whole blood surplus samples from previously ordered CBCs were analyzed to collect the reticulocyte channel information. The IRB waived consent for the study samples. Children with clinical and/or laboratory evidence of RBC or platelet abnormalities were excluded. The five age groups included: Group 1 = 1 month - 1 year; 2 = 1 - 3 years; 3 = 3 - 6 years, 4 = 6 - 12 years; and 5 = 12 - 18 years. Reference intervals were calculated (SAS/STAT Software) as per the CLSI guidelines C28-A3C. The non-parametric calculation was used for groups with >120 samples, and the robust method was used for two groups with <120 samples. The RBC indices and platelet count were included in the reference interval calculations to provide a comparison to their reticulated counterparts.

Results: The 95% reference interval limits are in Table 1. Ninety percent confidence intervals for the ninety-five percent upper and lower reference interval limits were calculated, as well (data not shown).

Conclusions: Our results suggest age related trends for the new reticulocyte and reticulated platelet parameters.

A-302

The evaluation of affecting factors on platelet reference ranges in the population of Northeastern China

S. Y. Wu1, X. Shi2, J. Sun1, F. Hassouna3, C. Wang1, J. Niu1. 1Confrontia Clinical Laboratory, Lawrenceville, GA, 2Internal Medicine, First Affiliated Hospital, Jilin University, Changchun, Jilin, China, 3Geriatrics, First Affiliated Hospital, Jilin University, Changchun, Jilin, China

Objective: The purpose of this study is to evaluate the clinical laboratory variables, their correlation to platelet count (PLT), the reliability of established reference ranges and their applications in clinical research and diagnostic test. Methods: This study was carried out in Chang Chun city and its suburban area in China. 3800 cases were selected during year of 2010 to 2012. Inclusive criteria were as following: 1. No medications within one month; 2. No medical history of thrombosis and hemorrhagic disease. Exclusive criteria were: 1. Female patients are at menstrual period; 2. Female who are pregnant; 3. Patients who have medical history of liver disease or hematologic diseases. Patients who met the inclusive criteria were put in questionnaire survey for past medical history and social history. 5 ml of blood was drawn for clinical chemistry analysis including liver function test (to exclude unknown hepatic disease), blood glucose test and lipid panels. Hematology variables include platelet count (PLT), mean platelet volume (MPV), plateletcrit (PCT), and platelet distribution width (PDW). SSPE software has been used for ANOVA analysis. P<0.05 was used for statistical significant testing in this study.

Results: This study showed PLT ranged from 147-363 K/μL. MPV were from 6.8-10.5 fl. PCT were from 0.13%-0.29%. PDW were from 15.5%-18.4%. These variables were affected by the cholesterol and triglyceride level, particularly in the group of 50 years or older. The correlations analysis indicated that the higher the cholesterol, the higher the PLT, MPV, and PCT. The average platelet count was higher in female than male. Smoking, alcoholic, BMI, blood pressure and blood sugar have not effects on platelet variables. Conclusion: Based on these case studies and the analysis of clinical chemistry variables, we concluded that diet, blood pressure and social behavior do not have impact on platelet values. Age and high cholesterol cause elevated platelets count. This supports the previous high study that high cholesterol causes high coagulation diseases including stroke, myocardia thrombosis and deep vein thrombosis.

A-303

Measurement of Serum Ferritin Concentrations in a Japanese Young Population Using a Newly-Developed System, Point ReaderTM and Point StripTM Ferritin

K. Kanamori1, R. Kubota2, Y. Kawai1, N. Sakai1, K. Shibå1. 1Bunkyo Gakuin University, Tokyo, Japan, 2Saitama Prefectural University, Saitama, Japan, 3USHIO INC., Tokyo, Japan

Background: Iron-deficiency anemia is usually diagnosed by measuring the level of hemoglobin. However, even if the hemoglobin level is within the reference range, the serum ferritin concentrations may still be <12 μg/L resulting in a latent iron-deficiency state without anemia. Blood donation has a significant impact on the iron levels of the body, especially in blood donors with latent iron deficiency. Therefore, the objective of this study was to evaluate the serum ferritin concentrations in a Japanese young population, using the newly-developed serum ferritin measurement system, Point ReaderTM (USHIO, Tokyo, Japan) and Point StripTM Ferritin (ASKA, Kanagawa, Japan).

Subjects: Serum and blood samples were obtained from 36 male and 108 female students (age, 20-24 years) from Bunkyo Gakuin University, Tokyo, Japan. The ethical committee of Bunkyo Gakuin University approved this study, and informed consent was obtained from all subjects.

Methods: Serum ferritin concentrations were measured using Point Reader and Point Strip Ferritin based on the principle of immunochromatography. The hemoglobin levels were measured using XE-2100 (Sysmex, Hyogo, Japan).

Result: The serum ferritin concentrations of the young Japanese population were shown in histogram. The serum ferritin concentrations in the 36 male students ranged from 20.2 μg/L to 179.1 μg/L, while that of 12 (11.1%) female students were <10 μg/L. Overall, the serum ferritin concentrations of the male students were observed to be higher than those of the female students. 23 (21.3%) female students showed latent iron deficiency state without anemia.

Conclusions: Out of 108 female students, the 21.3% with latent iron deficiency are at a significant risk of developing iron deficiency anemia from blood loss, such as that
occurring during blood donation. Estimation of the hemoglobin level alone in blood donors may not be adequate; therefore, the estimation of serum ferritin concentrations may also be necessary to detect pre-clinical iron deficiency.

A-304

Prognostic Value of Modest Increases of Plasma D-dimer Concentration in Patients with Previous History of Myocardial Infarction

Background: D-dimer can be considered as a global marker of the turnover of cross-linked fibrin and of activation of the hemostatic system. We prospectively investigated whether modest increases of plasma D-dimer levels might be relevant to prognosis in patients with a previous history of myocardial infarction. Methods: We studied 606 consecutive patients with a previous history of myocardial infarction (median age, 65 years; 508 males) and estimated glomerular filtration rate (eGFR) ≥15 ml/min/1.73 m². Blood samples for measurements of D-dimer, total plasminogen activator inhibitor-1 (tPAI-1) and high-sensitive C-reactive protein (hsCRP) were obtained at enrollment. Among these patients, 65% had hypertension, 36% had diabetes, 35% had chronic kidney disease, and 74% had history of coronary revascularization. Results: During a median follow-up period of 43 months, there were 120 cardiovascular events including 20 cardiovascular deaths. Comparably, patients who had cardiovascular event were older (median, 67 vs. 65 years, p = 0.01), had higher levels of D-dimer (0.65 vs. 0.44 μg/ml, p < 0.0001), and displayed a lower level of eGFR (62 vs. 70 ml/min/1.73 m², p = 0.02) and left ventricular ejection fraction (LVEF, 50 vs. 53 %, p < 0.0001) than those who did not. On Cox regression analyses multivariate including 12 clinical and angiographic variables, D-dimer levels were independently associated with cardiovascular events (relative risk: 1.92 per 10-fold increment, p = 0.02). Clinical characteristics and cardiovascular mortality and cardiovascular event rates according to tertiles of D-dimer were shown in Table. Conclusion: Modest increases of D-dimer may be independently associated with adverse outcomes in patients with a previous history of myocardial infarction. Measurements of D-dimer may be useful for the risk stratification of adverse outcomes in this population.

A-306

Acute erythroleukaemia with atypical presentation

L. B. Zuppiani1, S. S. Rodrigues2, O. Fernandes1, C. L. Oliveira1, J. Tabac2, O. F. Dias Neto2, D. P. Jardini1, E. H. J. T. Daur2. ‘DAXA, São Paulo, Brazil, 2Clinica Oncológica Paulista, São Paulo, Brazil, 3Hospital Paulistano, São Paulo, Brazil

Background: Acute erythroleukaemia are a group of acute leukaemias characterized by the predominance of erythroid population. It is divided into two groups based on the presence or absence of a significant myeloid component: Erythroleukaemia (Erythroid/myeloid) and Pure erythroid leukaemia. Erythroleukaemia (Erythroid/myeloid) is diagnosed when the presence of erythroid precursors in the bone marrow is ≥ 50% of the nucleated cell population and ≥ 20% of myeloblasts in the non-erythroid cell population. Pure erythroid leukaemia is diagnosed when ≥ 80% of cells in the bone marrow are committed with the erythroid lineage (undifferentiated or proerythroblastic in appearance) and there is no significant myeloblastic component.

Clinical case: MCA, a 71 year old woman was admitted to the orthopedic clinic at Hospital Paulistano with bone pain. Her first blood count showed mild anemia (hemoglobin: 10g/dl). On the course of her hospitalization she presented a severe drop in hemoglobin levels, so a bone marrow count was performed. Bone marrow examination (04/16/2013): Slightly hypocellular bone marrow with 18% of cells from erythroid lineage (5% of those cells were proerythroblasts with morphological alterations). Presence of megaloblasts, binucleated red blood cells and altered cytoplasmic features. Neutrophilic series showing asynchronic maturation, 1% of myeloblastic components and megakaryocytic serie without morphological alteration.

Iron stains: 30% of ringed sideroblasts. Cytogenetic analysis: 45, XX, deletion of the long arm of chromosome 5, terminal deletion of the long arm of chromosome 5, monosomy of chromosome 19 and iSIS trisomy. In the past there had been multiple hospital admissions for the presence of anemia. Conclusion: This is an example of a rapidly progressive acute erythroleukaemia, that was initially diagnosed as a myelodysplastic syndrome with 5% of proerythroblasts and absence of a myeloblasts. The cytogenetic abnormalities found in this patient are present in myelodysplastic syndromes (MDS) as well as in erythroleukaemia. Although there are no specific chromosomal abnormalities, the -5/del, -7/del (both present in this case) and chromosome 8 trisomy are the most common cytogenetic abnormalities found in erythroleukaemia. It is known that the presence of complex cytogenetic abnormalities (more than 3 chromosomal abnormalities) is the only statistically significant independent variable that adversely affects survival in the acute erythroid leukaemia group. The present report shows a case that began with a bone marrow count of MDS with 5% proerythroblasts and absence of myeloblasts and rapidly changed its morphological characteristics to a erythroleukaemia. This case highlights the necessity of a biomarker that can precisely differentiate between these two diseases, so that the appropriate treatment can be initiated without delay.

A-307

Evaluation of the Alcor Scientific iSED Erythrocyte Sedimentation Rate Analyzer

J. Dohnal, D. Skale. NorthShore University HealthSystem, Evanston, IL

OBJECTIVE: This study evaluates the performance of the Alcor Scientific iSED analyzer. The analyzer measures erythrocyte sedimentation rate using the principles of hemorheology in a photometric based method.

METHODS: Split sample comparisons were performed over a 5-week time period using the manual Westergren Sedimentation Rate method manufactured by LP Italiana Spa as the predicate device. During the study period two levels of Alcor Scientific control material were run each day that sample analysis was performed. Controls were run each day that sample analysis was performed. Studies using fresh patient samples yielded similar results and were maintained over time once the instrument was placed into clinical service. There was no evidence of sample carryover. Correlation between the predicate method results and the iSED analyzer results using patient samples was iSED = 0.7006 x (manual method) + 5.113 with an R² value of 0.7412. 217 patients were used in the study (61 males and 156 females). The clinical interpretation of the results for the two methods on all 61 male samples and 150 of the 156 female samples correlated. No pattern or explanation for the 6 outlier results could be found. For the patient samples the concordance coefficient was 0.9423 (substantial agreement) and the weighted kappa coefficient was 0.9424.
CONCLUSIONS: The analytical performance of the iISED analyzer was acceptable with CVs at least as good as those listed in the package insert. The instrument is easy to operate and requires a short training period. Maintenance is minimal and mechanical performance is acceptable. Although some disparate values were found between the two methods no systematic biases were noted. Instrument repairs are affected via a central service center, so instruments needing repairs must be shipped out to the manufacturer. Loaner instruments are not available at the time of this abstract submission. The downtime associated with instrument repair is unacceptable being in the range of 14 - 20 days. Unless a laboratory has multiple instruments in operation, this represents a significant drawback that needs to be addressed by the vendor.

A-308
Elevated Serum Levels of Von Willebrand Factor Antigen are Associated with Poor Prognosis in Patients with Symptomatic Waldenstrom’s Macroglobulinemia

I. Papassotiriou1, E. Kastritis2, E. Terpos3, N. Simos1, E. Eleutherakis-Papaioakou2, N. Kanelias1, K. Pantelaki1, M. Mazarakis1, M. Guvratopoulou1, M. Roussou1, M. A. Dimopoulos1. 1Department of Clinical Biochemistry, “Agia Sophia” Children’s Hospital, Athens, Greece, 2Department of Clinical Therapeutics, University of Athens, School of Medicine, Athens, Greece

Background: Waldenstrom’s Macroglobulinemia (WM) is an uncommon malignancy which, is characterized by the infiltration of the bone marrow by lymphoplasmacytic cells, which produce a monoclonal IgM. Recently, it was shown that high levels of von Willebrand Factor antigen (vWF:Ag), are associated with adverse prognosis in patients with symptomatic WM and it was suggested that vWF:Ag levels may reflect interactions between lymphoplasmacytic cells and other cells of their microenvironment such as mast cells and endothelial cells. We aimed to evaluate the prognostic importance of vWF:Ag levels of patients with symptomatic previously untreated WM, in order to validate vWF:Ag as a possible prognostic marker for progression free (PFS) and overall (OS) survival.

Patients and Methods: The analysis included 42 patients with symptomatic WM, and 19 healthy controls of matched gender and age. (Anemia (250U/L and 58% had hemoglobin <3.0 g/dL). Median serum IgM was 3340mg/L (range 246-9586mg/dL). According to IPSSWM, 22% had low, 43% intermediate and 35% high risk WM, respectively. Reasons to initiate therapy included cytopenias in 42% of patients, B-symptoms in 15%, hyperviscosity in 12%, neuropathy in 10% and other reasons in 21%. Primary therapy based on rituximab was given in 54% achieved at least 50% reduction of IgM. vWF:Ag levels were measured in serum collected before initiation of therapy by means of a latex particle-enhanced immunoturbidimetric assay (ACL Top 3G, Instrumentation Laboratory, USA).

Results: Median serum level of vWF:Ag was 1011U/dL (mean 132.5U/L, range 19.9-399.0U/L) and were slightly higher compared to the serum levels of healthy controls (median 85.0 U/L, mean 85.0±12.4 U/L). However, 6/42 (14%) had vWF:Ag levels median value was more frequent in patients with beta2-microglobulin ≥3.0 mg/L (p=0.006) and less frequent in patients with low (11%) vs. patients with intermediate (47%) or high (62%) risk IPSS (p=0.006). There was no correlation of vWF:Ag levels with IgM levels or with the extent of bone marrow infiltration or with other manifestations of the disease. Median follow up of symptomatic patients was 4 years. Patients with vWF:Ag levels within the upper quartile (i.e. vWF:Ag ≥200.0U/L) had a median progression free survival of 12 months vs. 63 months of patients with vWF:Ag <200.0U/L (p=0.001), while the median survival for patients with vWF:Ag ≥200.0U/L was 37 months (4-year survival 29%) vs. 4-year survival of 97% for patients with vWF:Ag <200.0U/L (p=0.001).

Conclusion: In conclusion, the serum levels of vWF:Ag provide significant prognostic information in patients with symptomatic WM and patients with levels ≥200.0U/L have a very poor prognosis compared to patients with lower levels. vWF:Ag measured in the serum, may become an important prognostic marker in WM and needs further validation.

A-309
Full Automation of Heparin Induced Thrombocytopenia ELISA Assay on Dynex DSX ELISA platform.

C. Cronin, F. Lucas, V. Ricciuti. University of Cincinnati Medical Center, Cincinnati, OH

Background: Heparin induced thrombocytopenia (HIT), with or without thrombosis, is an important cause of morbidity and mortality in patients treated with unfractionated heparin. HIT is invariably characterized by antibodies specific to platelet factor 4 (PF4) and heparin complex. Our goal was to fully automate a HIT ELISA assay (Immucor, Inc., Norcross GA) with the Dynex DSX instrument (Dynex Technologies, Chantilly, VA) for application in clinical laboratories to achieve a less labor intensive approach and high through-put HIT testing.

Method: 37 patient samples were analyzed side by side using the manual HIT ELISA and the automated HIT ELISA on Dynex DSX. Patient samples were added to micro wells coated with platelet factor 4 (PF4) and complexed to polyvinyl sulfonate (PVS) as a PF4:PVS complex. If an antibody was present and recognizes a site on the PF4:PVS complex, binding would occur. Unbound antibodies were washed away and an alkaline phosphate labeled anti-human globulin reagent (Anti-IgG, A, M) was added to the wells and incubated. The unbound anti-IgG/A/M was washed away, and the substrate PNPP (p-nitrophenyl phosphate) was added. After an incubation period, the reaction was halted with a stopping solution and the optical density (OD) was measured by a spectrophotometer at an absorbance of 405 nm using a reference filter of 490 nm. The only changes in the procedure during the programming of Dynex DSX software from the manual hit ELISA protocol were the removal of the pre-soaking step prior to pipetting reagent and the programming of a longer incubation time which was extended from 30 to 35 minutes. 20 known negative samples for HIT and 17 known positive samples for HIT were analyzed for the presence of PF4 antibodies by the fully automated method on the Dynex DSX, and then manually run by hand. An optical density (OD) greater than 0.4 is used as positive cut-off for PF4 (HIT) antibodies detection.

Results: The qualitative comparison of results obtained with the manual HIT assay and the automated HIT assay showed 100% agreement using the 0.4 OD cut-off. The correlation using the OD from samples was excellent (y(automated)=0.9x(manual)+0.02, r=0.96) with a bias of -0.1. The precision (between days) using the Dynex DSX was above manufacturer expectation (CV<20%) as CV at low level (OD=0.3) was 19.5% (n=8) and at high level (OD=1.8) CV was 5.2% (n=8). Precision using manual procedure was 5.5% (n=6) at OD=0.3 and 16.2% (n=6) at OD=1.8. The DSX instrument uses disposable pipette tips and performs all pipetting steps for reagents, controls, patient samples as well as washing and rinsing steps. This method is less labor intensive and improves the turnaround time.

Conclusion: The fully automated DSX instrument for HIT testing showed an excellent correlation with the manual procedure. The HIT assay on the Dynex DSX takes less than two hours. It is an easy to operate and requires a short training period. Maintenance is minimal and the fully automated method on the Dynex DSX, and then manually run by hand. An optical density (OD) greater than 0.4 is used as positive cut-off for PF4 (HIT) antibodies detection.

A-310
New policy reduces manual slide reviews on platelet tests

B. R. Morgan1, D. L. Clark2. 1Sacred Heart-St. Mary’s Hospitals; Ministry Medical Group, Rhinelander, WI, 2Sacred Heart-St. Mary’s Hospitals, Rhinelander, WI

Implementation of a new platelet manual slide review policy in a small hospital/clinic laboratory serving an oncology service can produce a modest reduction in slide reviews related to platelet count flags, improve turnaround time, and save an estimated $3/slide review (6 min/case). The policy at this institution for performing a Wright stained slide review on specimens tested using a Sysmex XE-2100 Hematology Instrument was <100,000/ul and/or a Sysmex platelet flag (platelet clumps CLP, platelet abnormal distribution PAD, platelet abnormal scattergram PAS). Absolute delta check values set at ≥20,000/ul (<100,000/ul) and ≥50,000/ul (100,000 - 100,000/ul) reflected a review of clinical history, but not slide review. The goal of the policy revision was to decrease slide reviews related to platelets on blood samples from patients with known histories of low platelet counts. Real time review of LIS/EHR patient information was a necessary component for the new platelet slide review policy and designed as follows:

- No flags= report result
Can Neutrophil/Lymphocyte Ratio be Used in the Differential Diagnosis of Abdominal Pain of Appendicitis and Familial Mediterranean Fever?

O. Baykan, A. Yaman, G. Gökulu, D. Altinoğ, O. Sirıkci, G. Haklar, Marmara University School of Medicine, Istanbul, Turkey

Background: The neutrophil/lymphocyte ratio (NLR) is proven to be associated with some conditions such as chronic inflammation in cardiovascular diseases, malignancies, ulcerative colitis, gangerous appendicitis, and amyloidosis. Familial Mediterranean Fever (FMF) is an inherited disorder which is common among individuals of Mediterranean descent. Both FMF and appendicitis may manifest with abdominal pain which is hard to differentiate. This retrospective study aimed to evaluate the ability of the NLR to predict acute appendicitis pre-operatively and to differentiate cases with abdominal pain due to FMF and acute appendicitis.

Methods: A hundred patients who were admitted to emergency unit of Marmara University Pendik E&R Hospital with abdominal pain were included. Fiftysix patients who had the diagnosis of appendicitis were treated operatively and proven as appendicitis pathologically. FMF group was formed by 44 patients who were monitored at the Rheumatology Clinic with colchicine treatment and without any other diseases.

Results: Median slide check time, defined as start to finalizing result, was 6 min/case; $3/platelet slide check (savings based on $30 labor and benefits). If this sample reflects our patient population and provider ordering patterns, annual savings are modest at approximately $1000/yr. More important are the improved turnaround time for at least 6 min for these specimens, significant given that average turnaround time for platelet count at this laboratory without flags (receipt to verify) is 10min, and decreased technologist disruption by eliminating unnecessary platelet slide checks. Implementation of a new platelet manual slide review policy modestly reduced the number of manual slide reviews performed on patients showing repetitive blood counts with thrombocytopenia <100,000/uL, abnormal platelet distribution or scattergram flags.

Conclusion: According to the results of our study, NLR of 4.97 seems to be a reliable parameter in discriminating abdominal pain of acute appendicitis from FMF attack. NLR is cost effective, readily available, and can be calculated easily.

A-315

Reticulated Platelets - Towards a Standardized Approach: Results From 'Apparently Disease-free' Subjects in 3 Countries

N. LLEWELLYN-SMITH1, B. HEDLEY1, S. LANG2, D. ROSENFELD2, N. McNAMARA3, M. KEENEY1. 'Abbott Diagnostics, Santa Clara, CA; London Health Sciences Centre, London, ON, Canada; Liverpool Hospital, Liverpool, Australia

Background Despite obvious potential as a sensitive marker of thrombopoietic activity, the lack of a reference method and standards for Reticulated Platelets (RP) counting have hampered widespread adoption. Here we applied a new, highly standardized method (described in a separate poster) to assess typical values in healthy (‘apparently disease-free’) subjects at 3 international sites. Our goal was to test whether 3 different laboratories, using the same protocol on 3 different flow cytometers, could recover statistically similar results in apparently disease-free (‘normal’) subjects.

Methods The 3 sites (instruments) were 1) Abbott Hematology, California (Accuri-C6), 2) Liverpool Hospital, Australia (FACSCanto) and 3) London Health Sciences, Canada (Gallios). EDTA specimens were collected from 71 consented voluntary participants in the Abbott staff donor program, lab staff or surplus CBC specimens from subjects without any hematological abnormality. Briefly: fresh (<8 hours post draw) whole blood was incubated with the CD61-APC/CD41-APC monoclonal antibody mix and stained with TO before fixation with formaldehyde. A second tube, with PBS in place of TO, served as the control. During analysis, a positive marker was drawn on a TO histogram (gated on the platelet cluster) of the control tube to include 0.1% of the negatives. The instrument settings and this marker were held fixed for the acquisition and analysis of the tube containing the TO-stained platelets. Basic statistics (means, medians, SD and CV) were generated in MS Excel 2010, Analysis of Variance (ANOVA) was used to assess the mean results (males, females, pooled) across the 3 sites.

Results The mean RP results from the 3 sites were as follows: California 5.2% (SD 3.3%, n=21), Canada 4.8% (SD 0.7%, n=21) and Australia 4.6% (SD 3.0%, n=29). Mean for the pooled 71 subjects was 4.9% (SD 2.7%, Range 1.7-17.1%). Differences in the means between the 3 sites were not statistically significant (p > 0.05). At one site (California) the mean female RP count was higher (6.1%) than the mean male value (4.1%) though the differences were not statistically significant.

Conclusion We have demonstrated that a standardized flow cytometric protocol, at 3 geographically distinct sites, on 3 different instruments, yielded comparable results in ‘apparently disease free’ subjects. The major shortcoming of all nucleic acid based methods is the non-specific uptake of the nucleic acid dye by platelet dense and alpha granules. We were able to minimize this by using a dilute TO solution. To further mitigate non-specific dye uptake, we used a simple and objective control strategy (negative control tube) to differentiate specific from non-specific staining. We believe this method is simple and robust enough to form the basis for development of a potential reference method. Further studies to define the ideal dye concentration and characterize inter-lab performance are planned.
Proteomic profiling of platelets in acute ischemic stroke patients

O. Cevik1, T. Baykal2, G. Somay3, A. Sener4, ‘Cunliffe University Faculty of Pharmacy, Sivas, Turkey, 2Medipol University School of Medicine, Istanbul, Turkey, 3Hisar Intercontinental Hospital, Neurology, Istanbul, Turkey, 4Marmara University Faculty of Pharmacy, Istanbul, Turkey

Background: Platelets are important in the pathogenesis of stroke and ischemic stroke is high level of mortality. Especially antiplatelet agents are useful for prevention and treatment in this patients. Platelets are so easily activated by different stimulants in the circulation which can be affected by activation and apoptosis.

Methods: Using LC-MS based protein profiling, we examined and correlated the proteomic response of stroke patients platelets. Patients were admitted to neurology department who had ischemic stroke within 24 h. Stroke is defined as rapidly developing clinical symptoms/signs of cerebral dysfunction lasting more than 24 h without any cause other than a vascular abnormality. Venous blood was drawn from all patients who had not taken any antiplatelet drugs for the prior 14 days, and was collected into acid citrate dextrose containing tubes for platelet isolation. Platelets tryptic peptides were analyzed in triplicate on the LC-MS/MS system (UPLC-ESI-QTOF-MS). Tandem mass data extraction were done with ProteinLynx Global Server v2.5 (Waters) and searched with the IDENTITY algorithm against the reviewed database of homo sapiens (www.uniprot.org). Protein Identi

Results: Proteomic profiling of platelets obtained from the stroke patients resulted in identification of 500 proteins. Of these, 83 proteins were found to be differentially expressed in patient as compared to control. These differentially expressed proteins were involved in various processes such inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. Plasma levels of TNF-α increased in the stroke patients (29.12 ± 1.37 pg/ml) compared with control subjects (5.16 ± 2.84 pg/ml).

Conclusion: This is the first report providing a global proteomic profile of platelets from stroke patients. Our data provide an insight into the proteins that are involved as platelets inflammation response during ischemic stroke. Inflammation caused by stroke changed to platelet cellular proteins interactions in patients.

Investigating lipid effects on protein C and thrombin-activatable fibrinolysis inhibitor activation by thrombin/thrombomodulin complex

V. Gruzdys, X. Sun. Cleveland State University, Cleveland, OH

Background: Thrombomodulin (TM), an endothelial membrane protein, plays central roles in maintaining haemostasis and preventing inflammation by increasing protein C (PC) and thrombin activatable fibrinolysis inhibitor (TAFI) activation by thrombin. APC selectively inactivates coagulation factors Va and VIIIa, thus preventing excessive coagulation. TAFI selectively inactivates coagulation factors X, IX, and XI, thus preventing fibrinolysis. This study aimed to investigate the effects of different lipids on protein expression changes in patients with stroke.

Methods: To study the capacity of TM/thrombin to generate APC and TAFIa, proteins contained in liposomes were separated from free form by size exclusion chromatography using Sepharose CL-4B. Liposomal TM concentration was verified by first separating lipid and protein components followed by protein content determination by Bradford assay. APC and TAFI were generated by incubation with liposomal TM and thrombin in otherwise identical conditions. Concentrations of APC and TAFI were determined by hydrolysis of Spectrozyme PCa and heparin-aryl-glycine, respectively.

Results: It was shown that incorporation of TM into phosphatidylcholine vesicles increased generation of APC (26.4 pmol ± 0.7 pmol) in comparison to free TM (18.2 pmol ± 0.7 pmol). Phosphatidyethanolamine had decreased APC generation (10.6 pmol ± 0.6 pmol), phosphatidylserine had a large increasing effect (35.9 pmol ± 1.3 pmol) while APC generation by thrombin alone and with phosphatidylcholine vesicles (but no TM) was below detection range. In addition, free TM was added to phosphatidylcholine liposome solution and APC was generated (20 pmol). This data suggested that separate lipid components do not increase APC level as much as the complex between lipids and TM does. Increase in TAFI generation was observed after TM was reconstituted in phosphatidylcholine (8.34x104 U), where 1 U = hydrolysis of 1 μmol of substrate per min.) and phosphatidylethanolamine containing liposomes (9.18x104 U). Phosphatidylethanolamine reconstitution resulted in slight elevation of TAFIa, albeit high variation was observed between measurements (7.54x104 ± 1.6x104 U).

Conclusion: We investigated lipid effects on protein C and thrombin-activatable fibrinolysis inhibitor activation by thrombin/thrombomodulin complex. We found that phosphatidylserine-bound TM dramatically increases the generation of APC and TAFI. TAFI generation was increased by incubation with liposomes containing phosphatidylserine, which had a reducing effect on APC generation. This study suggests possible significance of the effects of cell membrane lipids on hemostatic balance and inflammation and could have possible implications related to damaged endothelium situations such as septic shock. Future studies will test this observation with human endothelial cell lines.

Establishment of reference intervals for HbF and HbA2 in a Northern Alberta population

T. Higgins, K. Rodriguez Capote. DynalIFEDx, Edmonton, AB, Canada

Background: DynalIFEDx is the sole laboratory performing hemoglobinopathy and thalassemia investigations for a catchment area of 2 million people in northern Alberta. Samples for hemoglobinopathy and thalassemia testing come from physician request, immigration medicals and as a reflex to the presence of a hemoglobin variant noted on HPLC analysis for HbA1C. A review of our data showed that 17% of HbF results exceeded the manufacturer’s reference interval of <1.0% so it was necessary to reevaluate the reference interval for HbF. A reference interval for HbA2 was calculated at the same time.

Method: 6616 thalassemia and hemoglobinopathy investigation requests were analyzed in the period January 1, 2013 to December 31, 2013. 3306 were on patients older than 2 years and interpreted as “normal” by a Clinical Chemist based on their hematology indices (hemoglobin >120g/l, mean cell volume > 80fl), absence of a hemoglobin variant, replete iron stores and calculated Mernex Index and Discriminant Factor EDTA-anti-coagulated blood samples were analyzed by high performance liquid chromatography (HPLC) using the β thalassemia program on the Bio-Rad VARRANT II. Total imprecision (CV%) for HbF was 2.2% and 1.2% at levels of 2.17% and 9.54% respectively. For HbA2 the total imprecision (CV %) was 3.7% and 2.1% at levels of 2.82% and 5.74% respectively. The statistical software package MedCalc® version 11.4.2.0 for Windows was used to analyze the data.

Results: 3306 individuals, median 31 years, range 3 to 92 years were included in the reference interval calculation. As recommended by CLSI a non-parametric method was used to calculate the reference interval as the Kolmogorov-Smirnov test showed that the distribution of HbF and HbA2 values did not follow a normal distribution. Reference Intervals are HbA2 Lower limit (90% CI) 0.2% (0.20 to 0.23) and Upper limit (90% CI) 1.8% (1.80 to 1.90).

Conclusion: The appropriate reference intervals for the Northern Alberta population using the β thalassemia program on the Bio-Rad VARRANT II was up to 1.8% for HbF and up to 3.4% for HbA2.

Protein C Antigen And Activity In Patients With Sickle Cell Anemia

S. E. Idogun1, O. E. Ichneroch2, 1university of Benin Teach Hospit, BENIN, Nigeria, 2University of Benin Teaching Hospital, BENIN, Nigeria

BACKGROUND: Sickle cell disease (SCD) is characterized by vaso-occlusive events and organ damage which form important causes of morbidity and mortality. Protein C is a naturally occurring anticoagulant that has been demonstrated to be deficient in sickle cell anaemia patients and the impact of hypercoagulable states and thrombosis on sickle cell disease still remains uncertain.

AIM AND OBJECTIVES: The objective of this study was to determine the protein C (PC) levels of the sickle cell patients and to explore the relationship between protein C levels and vaso-occlusive events as well as related complications.

SUBJECTS AND METHODS: A cross-sectional study comprising sixty one sickle cell subjects and thirty healthy control subjects. Protein C antigen (quantitative) and C levels and vaso-occlusive events as well as related complications.
activity (qualitative) levels were assayed using enzyme linked immunosorbent assay and the Protac (photometric) method respectively. Haematological parameters were measured with the haematology automated analyzer. Data were analyzed using SPSS version 16.

RESULTS: The adult SCD subjects had lower values for both PC antigen (68.6 ± 16.0 %; p<0.004) and activity (49.0 ±13.0 %; p<0.005) when compared to the adult control group (PC antigen = 84.8 ± 18.0 %; PC activity = 60.3±10.37 %). Similarly the paediatric SCD subjects had lower PC antigen (54.9 ± 14.9 %; p=0.001) and activity (48.0 ± 13.1 %; p<0.006) levels compared to their control group (PC antigen = 79.6 ± 16.7 %; PC activity = 58.6 ± 8.0 %). However there was no significant association between PC levels and SCD complications or vaso-occlusive events (p >0.05).

CONCLUSION: There is functional PC deficiency in SCD patients. This supports a hypercoagulable state in the patients. However there was no significant association between PC levels and SCD complications or vaso-occlusive events. Thus protein C level in SCD patients may not be a good prognostic marker for disease severity.

PROTEIN C SERUM LEVELS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Adult (n = 30)</th>
<th>Paediatric (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein C Antigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (%)</td>
<td>85.6 ± 16.0</td>
<td>84.8 ± 18.0</td>
</tr>
<tr>
<td>p-value</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Protein C Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (%)</td>
<td>49.0 ± 13.0</td>
<td>60.3 ± 10.0</td>
</tr>
<tr>
<td>p-value</td>
<td>0.005</td>
<td>0.006</td>
</tr>
</tbody>
</table>

* t-test

A-320

Thrombocytopenia in Plasmodium falciparum Parasitized Pregnant Women

F. A. Botschway1, W. Ababi1, P. Bannerman-Williams2, H. Salifu3, C. E. Lekpor4, 1Department of Child Health, Korle Bu Teaching Hospital, Accra, Ghana, 2Department of Maternity, Korle Bu Teaching Hospital, Accra, Ghana, 3Morehouse School of Medicine, Atlanta, GA, 4Department of Medical Laboratory, Kwame Nkrumah University Of Science and Technology, Kumasi, Ghana

Background: Malaria infection during pregnancy is a major public health problem in tropical and subtropical regions of the world. Hematological changes associated with malaria in pregnancy are not well documented, and have focused predominantly on anemia.

The aim of this study was to determine the impact of Plasmodium falciparum parasitaemia on the platelet count of pregnant women at the maternity department of Korle Bu Teaching Hospital, Ghana.

Methods: This case control study evaluated the effect of malaria parasitaemia on the platelet count of Sixty (60) Plasmodium parasitized pregnant subjects. Sixty non- malaria parasitized pregnant women and sixty non-pregnant and non-malaria-infected subjects served as control. 1.0 ml of blood sample was taken into EDTA bottle for Full Blood Count using Mindray BC 5300. Thick and thin film prepared and stained with Giemsa for the determination of P. falciparum parasite species and density using light microscopy. A platelet count of 100 × 10^9 /L was the threshold at two standard deviations below the mean for healthy Ghanaian pregnant women used to indicate thrombocytopenia. Differences in platelet counts were compared based on malaria species and parasitemia in matched non-pregnant and pregnant women.

Results: The mean platelet counts (~109 /L) were significantly lower in pregnant subjects with an episode of Plasmodium falciparum malaria 101.3 ± 9.2 × 10^9 /L compared to non-parasitized and healthy non-pregnant controls (245.09 ± 23.10 and 260 ± 50.5 × 10^9 /L) respectively. Platelet count values were 102.5 ± 9.58 × 10^9/L and 116.3 ± 15.7 × 10^9/L for the primigravidae and multigravidae respectively. (p = 10.36; P = 0.01). Parasite density was significantly higher among Plasmodium falciparum parasitized primigravidae compared to multigravidae 2140 (1628-2212) parasites/μL in primigravidae women compared to 1816 (1420-2212) parasites/μL in multigravida women. The mean parasite count in Plasmodium falciparum parasitized subjects was 2610 ± 224 parasites/μL, 95% confidence interval (2082-3108). Malaria parasitaemia was found to exert a significant reduction in platelet density in parasitized subjects. This reduction was more pronounced in primigravidae and multigravidae. An inverse relationship was established between parasite density and platelet count (y =-0.020 x+86.2, r =-0.3).

Conclusion: There is need for a strengthened antenatal care system with increased awareness of the problem among communities most affected by malaria. Preventive strategies including regular chemoprophylaxis, intermittent preventative treatment with antimalarials and provision of insecticide-treated bed nets should be implemented as well as integration of malaria control tools with other health programmes targeted to pregnant women and newborns.