Assigning Traceable Values to Commercial IVD Calibrators

Neil Greenberg, PhD, DABCC
Ortho-Clinical Diagnostics, Rochester, NY
US Delegate to ISO TC212 WG2
ADVAMED Delegate to JCTLM
Calibration Traceability … *Basic Concepts*

National & International Metrology Infrastructure Responsibilities

- International or National Reference Materials
- Accredited Calibration Labs

Manufacturer's Responsibilities

- Manufacturer's Calibration Center: In-house reference materials & methods
- In-house calibration lab: Working or Factory standards and Test Equipment

Adapted from: ILAC-G2:1994 Traceability of Measurements (ILAC 1996)
Calibration Traceability... *ISO Standards*

- ISO/DIS 17511 Metrological traceability of values assigned to calibrators and control materials
- ISO/DIS 18153 Metrological traceability ... for catalytic concentration of enzymes in calibrators ...
- ISO 15193 Presentation of reference measurement procedures
- ISO 15194 Description of reference materials
- ISO/DIS 15195 Requirements for reference measurement laboratories in laboratory medicine
Calibration Traceability - ISO/DIS 17511 Overview

- Main Objective: Ensure TRUENESS of test results based on AVAILABLE internationally recognized reference materials or procedures, when using a routine (lower metrological order) commercial method

- Specifies process documentation needed when establishing traceable assigned values for analytes in a product calibrator

- Requires definition of an UNBROKEN series of linked steps, starting at higher order (available) reference methods or materials, moving stepwise downward to assigned values for product calibrators
Calibration Traceability is...

- A tool to ensure accurate results
- A process that relates measurement values to a reference standard
- A property of the test result
- Maintained through monitoring and correction over time
Calibration Traceability Requires...

- Definition of the measurand
 \[\Rightarrow \text{(Analyte)} + \text{(type of quantity)} + \text{(sample)} + \text{(units)} \]

- Higher order Reference Systems
Calibration Traceability - *Scope of ISO17511*

- Specifies how to assure metrological traceability of values assigned to calibrators and control materials intended to establish or verify trueness of a method.
- Applies to calibrators and some control materials sold by manufacturers.
- 4.1.7 “The responsibility of the manufacturer for describing the traceability chain ... *start(s) at the value of the manufacturer's product calibrator and end(s) at the metrologically highest reference* used by the manufacturer.”
The traceability chain for a product calibrator must be described, from the highest metrological level down to the assigned value for the calibrator.

Each subsequent/lower level in a traceability hierarchy alternates between a measurement procedure and a measurement standard (i.e., a reference material)...

A given measurement standard (material) with its assigned value at one level calibrates the measurement standard (material) at the next lower level, by applying a measurement procedure...specified in a transfer protocol.
Calibration Traceability

Complete Hierarchy - Tracing to SI
[Courtesy - E. Voelkert, Roche Diagnostics, Gmbh; modified from ISO/CD 17511, Figure 1]

- **primary calibrator**
- **secondary calibrator**
- **manufacturer’s working calibrator**
- **manufacturer’s product calibrator**
- **routine sample**

- **primary reference measurement procedure**
- **secondary reference measurement procedure**
- **manufacturer’s selected measurement procedure**
- **manufacturer’s standing measurement procedure**
- **user's routine measurement procedure**

Diagram shows the hierarchy of calibrators and their measurement procedures, tracing back to primary reference.
Calibration Traceability...Key Definitions

Primary Measurement Standard

- Standard (material) that is ... widely acknowledged as having the highest metrological qualities and whose value is accepted without reference to other standards (*ISO 15194, 3.1*)

- Value is assigned either directly with a primary reference method, or indirectly by analysis of composition and impurities
Secondary Measurement Standard

- Standard (material) whose value is assigned by comparison to a primary standard

(ISO 15194, 3.2)
Reference Measurement Procedure

• Thoroughly investigated measurement procedure shown to yield values having an uncertainty...commensurate with the intended use, especially in assessing the trueness of other ... procedures ... and in characterizing reference materials.

(ISO 15193, 3.7)
Calibration Traceability…Key Definitions

Primary Reference Measurement Procedure
- Has the highest metrological qualities
- Detailed procedure and performance is completely described and understood
- Proved to be analytically specific
- Low uncertainty, with complete uncertainty statement available (in terms of SI units)
- Results accepted without reference to a measurement standard for the same quantity.

(adapted from ISO 17511, 3.25)
Calibration Traceability...Key Definitions

Secondary Reference Measurement Procedure

- Any Reference Measurement Procedures that are NOT primary, e.g.
 - Abell Kendall Cholesterol Method
 - GC or HPLC for many therapeutic drugs
 - CDC Hexokinase Glucose Method
 - CDC Urease Method for UREA
 - Atomic Absorption Spectrometry for various metals (Na, K, Ca, Mg, Mn, Fe)
Calibration Traceability…Key Definitions

Selected Measurement Procedure

- A measurement procedure that is calibrated by one or more primary or secondary calibrators (*ISO 17511, 4.2.2*)

- Can be a secondary reference method
Calibration Traceability…Key Definitions

Manufacturer’s Working Calibrator

• A reference material that has its value assigned via measurement with a selected measurement procedure (ISO 17511, 4.2.2)

• Commonly known as “Master Calibrator Lot”
Calibration Traceability...Key Definitions

Manufacturer’s Standing Measurement Procedure

• Is calibrated by Manufacturer’s Working Calibrator (Master Lot)

• Can be based on same principle/method as the routine commercial method, but with lower uncertainty due to robust implementation (ie., replications; strict quality control measures) (ISO 17511, 4.2.2)
Assigning Traceable Calibrator Values…

Field Serum Cholesterol Method with no Matrix Effects

Primary Measurement Standard
SRM 911a (NIST) - gravimetry

Manufacturer’s Working Calibrator (master lot)
Value-assigned Master Calibrator Lot

Manufacturer’s Product Calibrator
-New Lot with assigned values supporting new and existing reagent lots

Reference Measurement Procedure
Abell-Kendall Method

Manufacturer’s Standing Measurement Procedure/Product Calibrator Value Assignment Protocol
Master Reagent Lot plus multiple product reagent new lots & multiple analyzers (with new product calibrator lots as UNKNOWNs); multiple days and reps

Suitable for systems without calibrator matrix effects, and demonstrated commutability of Product Calibrator vs. Patients.
Assigning Traceable Calibrator Values...

Example 1: *Commercial* Cholesterol Method (with matrix effects)

- **Primary Measurement Standard**
 - SRM 911a (NIST) - gravimetry

- **Secondary Calibrator(s)**
 - Human Sample Panels (up to n=200 samples spanning range)

- **Manufacturer’s Working Calibrator**
 - (master lot)
 - Value-assigned Master Calibrator Lot

- **Manufacturer’s Product Calibrator**
 - New Lot with assigned values supporting new and existing reagent lots

Reference Measurement Procedure
- Abell-Kendall Method

Manufacturer’s Selected Measurement Procedure/Working Calibrator Value Assignment Protocol
- Multiple analyzers (n>3) & one Master Reagent Lot; Master Calibrator Lot as UNKNOWN; multiple days and reps

Manufacturer’s Standing Measurement Procedure/Product Calibrator Value Assignment Protocol
- Master Reagent Lot plus multiple product reagent new lots & multiple analyzers (with new product calibrator lots as UNKNOWNs); multiple days and reps
Assigning Traceable Calibrator Values...

Calibration Traceability is...

• Maintained through monitoring and correction over time
Maintaining Traceability Over Time

- To verify assigned-value stability, Calibrator Master Lot values are re-checked periodically with human sample panels assayed with Reference Method.
- Master Calibrator Lot Assigned-values are adjusted as needed.

Accuracy Not “zero”-bias

Accuracy “zero”-bias after calibration adjustment
Assigning Traceable Calibrator Values…

Maintaining Traceability Over Time

- Primary Measurement Standard
 SRM 911a (NIST) - gravimetry

- Secondary Calibrator(s)
 Human Sample Panels (up to n=200 samples spanning range)

- Manufacturer’s Working Calibrator (master lot)
 Value-assigned Master Calibrator Lot

- Manufacturer’s Product Calibrator - New Lot with assigned values supporting new and existing reagent lots

Reference Measurement Procedure
Abell-Kendall Method

Manufacturer’s Selected Measurement Procedure/Working Calibrator Value Assignment Protocol
Multiple analyzers (n>3) & one Master Reagent Lot; Master Calibrator Lot as UNKNOWN; multiple days and reps

Manufacturer’s Standing Measurement Procedure/Product Calibrator Value Assignment Protocol
Master Reagent Lot plus multiple product reagent new lots & multiple analyzers (with new product calibrator lots as UNKNOWNS); multiple days and reps
Calibration Traceability

ISO/CD 17511 - Specific Requirements

• The value assigned to a standard (material) at a given level ... (has an) uncertainty ...
 • includes inherited contributions from measurement standards and procedures at all higher levels of the calibration hierarchy.
 • additive and cumulative
 • Includes all measurement factors (e.g. pipetting, weighing)
 • Should be estimated (preferably) according to the GUM (International Guide to Uncertainty in Measurement)
 • Uncertainty information must be available, if requested
Assigning Traceable Calibrator Values…

Example 2: Commercial Cortisol Method

- **Primary Measurement Standard**
 - Definition of SI unit by CGPM

- **Secondary Calibrators**
 - ID/GCMS value-assigned patient sample pools

- **Manufacturers Working Calibrator Reference Calibrator set** (n=7 levels) forms the master curve

- **Manufacturers Product Calibrator**
 - New calibrator lot with values for a specific reagent master lot

- **Primary Reference Measurement Procedure**
 - Isotope dilution-gas chromatography - mass spectrometry (ID/GCMS)

- **Manufacturers Selected Measurement Procedure**
 - Immunoassay measurement of a set of seven working calibrators using multiple reagents lots and instruments

- **Manufacturers Standing Measurement Procedure**
 - Immunoassay measurement of Product Calibrators and generation of lot specific Master Calibration Curve
Calibration Traceability

- *Is Traceability to SI Required?*

- ISO 17511 Distinguishes between SI-traceable and non-SI-traceable quantities or measurands (analytes)
 - **SI-traceable**: physico-chemically well-defined substances - Type ‘A’ Quantities
 - Applies to ~25 analytes which are well defined, e.g. some electrolytes, metabolites, and hormones.
 - **Non-SI-traceable**: complex mixtures of different molecular entities, measured together because of a clinically relevant characteristic (e.g. lipoproteins, tumor markers) - Type ‘B’ Quantities
 - Applies to 100’s of quantities/analytes
Calibration Traceability…Key Definitions

International Conventional Calibrator

- Calibrator with a value not metrologically traceable to SI;
- Assigned value is based on international agreement

International Conventional Reference Measurement Procedure

- Yields values not metrologically traceable to SI, but the values obtained are agreed as reference values by international agreement
Calibration Traceability - *Some Limitations*

- For a large number of analytes, there may not be traceability above the level of manufacturer's “selected measurement procedure” or a manufacturer's “working calibrator,” absent universally agreed reference methods and materials. - *The Standard recognizes this.*

- In such cases, TRUENESS might be defined only in terms of a given manufacturer’s in-house calibration hierarchy (working methods and/or materials) until a universally agreed reference measurement procedure and/or calibrator becomes available.
Assigning Traceable Calibrator Values…

Example 3: Commercial Troponin I Method

Traceable?

- **Secondary Calibrators**
 - Human sample panel (n=200)

- **Manufacturers Working Calibrator**
 - In-House Reference Calibrator set forms the master curve

- **Manufacturers Product Calibrator**
 - New product calibrator lot with reagent-lot specific values and cal curves

- **Alternate Commercial Method/Market Leader**
 - Measure (n=200) human samples

- **Manufacturers Selected Measurement Procedure**
 - In-house immunoassay, including multiple reagent lots and instruments

- **Manufacturers Standing Measurement Procedure**
 - Immunoassay based on product principle; value assignment of Product Calibrators; generation of reagent-lot specific Master Cal Curves
Example 3: Commercial Troponin I Method

What is the calibrator traceable to?

- Alternate Commercial Method - Market Leader?
- Selected Measurement Procedure?
- Working Calibrator?
- Something Else?
Example 3: *Commercial* Troponin I Method

Beware and Avoid Lateral Traceability!

- **Secondary Calibrators**
 - Human sample panel (n=200)

- **Alternate Commercial Method/Market Leader**
 - Measure (n=200) human samples

- **Manufacturers Selected Measurement Procedure**
 - In-house immunoassay, including multiple reagent lots and instruments
Example 3: *Commercial* Troponin I Method

Beware and Avoid Lateral Traceability!

- **Secondary Calibrators**
 - Human sample panel (n=200)

- **Alternate Commercial Method/Market Leader**
 - Measure (n=200) human samples

- \(U = ? \)

Points to Consider & Questions to Ask…

- Frequency of method comparison between Alt Commercial Method & in-house Immunoassay (Selected Method)?
 - Once? More often?
- Is variation of Alternate Commercial Method controlled and known?
 - If NO, Alt Com Method is at SAME METROLOGICAL LEVEL as Manufacturer’s Method in routine customer use
Example 3: *Commercial* Troponin I Method

Beware and Avoid Lateral Traceability!

- **Alternate Commercial Method/Market Leader**
 Measure (n=200) human samples

- **Selected Measurement Procedure**
 In-house immunoassay

Points to Consider/Questions to Ask…

- Alternate Commercial Method - NOT a Higher Order method
- Selected Measurement Procedures are calibrated with a Secondary Calibrator or higher, or International Conventional Calibrator.
- Is the Human Sample panel (n=200) with values measured by the Alt Commercial Method actually a Secondary Calibrator set?
 ⇒ NO! Secondary Calibrators can only be value-assigned against methods calibrated either with Primary Calibrators or Conventional International Calibrators.
Example 3: *Commercial* Troponin I Method

Beware and Avoid Lateral Traceability!

Secondary Calibrators
- Human sample panel (n=200)

Manufacturers Working Calibrator
- In-House Reference Calibrator set forms the master curve

Alternate Commercial Method/Market Leader
- Measure (n=200) human samples

Selected Measurement Procedure
- In-house immunoassay

What is the calibrator traceable to?
- *Selected Measurement Procedure*, if fully validated and variation in assigning values to working calibrators is known, or...
- *Working Calibrator*, if retained for longterm use, & stability monitored and controlled; no longterm reference back to Selected MP or higher.
Calibration Traceability Requirements - Recommendations for Manufacturer Documentation

Calibration Traceability tech report - include in Calibrator Product Technical File - for each analyte/method/system combination supported. Document...

- Calibrator Value Assignment process map
 • Follow format in ISO/CD 17511, e.g. Fig. 1
- Descriptions of measurement procedures (including protocols) & reference materials applied at each level
- Reference to process/test method validation reports - each measurement step; each value transfer step
- Estimates of uncertainties at each level
 • Calculations of combined uncertainty
- References to documentation/literature publications describing relevant reference materials and methods
- Certificates from higher order reference materials
Calibration Traceability Requirements - Recommendations for Manufacturer Documentation

Other items to include in calibrator technical file…

– Procedures for replacement of intermediate elements of traceability chain (e.g. working calibrators or master calibrator lots) when supplies/inventories are depleted or expired

– Methods/procedures and certificates of analysis from 3rd party labs and/or suppliers of reference materials.
 • Include providers of assayed patient sample panels used as secondary or working calibrators.

– In-house or external Reference Labs certification of conformity to ISO/CD 15195, if available
Calibration Traceability Requirements - Recommendations for Manufacturer Documentation

- Information to be Provided on Product Labeling
 - Provide brief, high level summary of Calibrator Value Assignment process chain map
 - Most important to identify highest order available reference methods and materials applied
 - If applicable, define and explain known biases vs. reference methods
 - Define commutability of the calibrator
 - Define which methods the assigned values apply to
 - Important to limit commutability claims only to methods for which the calibrator is validated for use
Calibration Traceability Requirements - Recommendations for Manufacturers __Key Learnings

• Use ISO language correctly
• Traceability requires re-verification over time
 – Unbroken series of linked steps
 – Avoid claiming traceability to metrological levels not supported by ongoing process to re-verify
• Always trace to higher order (materials & methods)
 – Beware Lateral Traceability
• Uncertainty is additive; fewer steps is best
• When standards don’t exist, traceability only to manufacturer’s in-house reference system is OK
• Validate each step in the chain
Calibration Traceability - *Selected References*

Assigning Traceable Values to Commercial IVD Calibrators

Neil Greenberg, PhD, DABCC
Ortho-Clinical Diagnostics, Rochester, NY
US Delegate to ISO TC212 WG2
ADVAMED Delegate to JCTLM

Thank You!

ngreenbe@ocdus.jnj.com