

PEARLS OF LABORATORY MEDICINE

High-Sensitivity Cardiac Troponin

Amy K. Saenger, PhD, DABCC

Hennepin County Medical Center / University of Minnesota Minneapolis, MN, USA

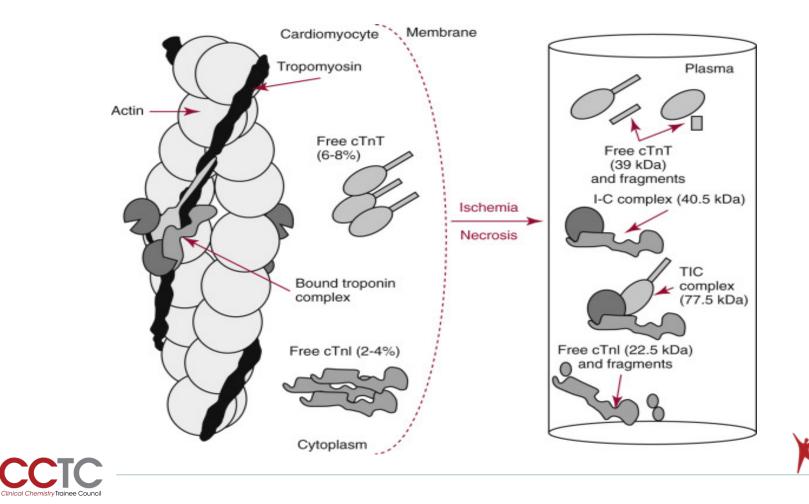
DOI: 10.15428/CCTC.2021.333355

Challenges in Cardiovascular Medicine

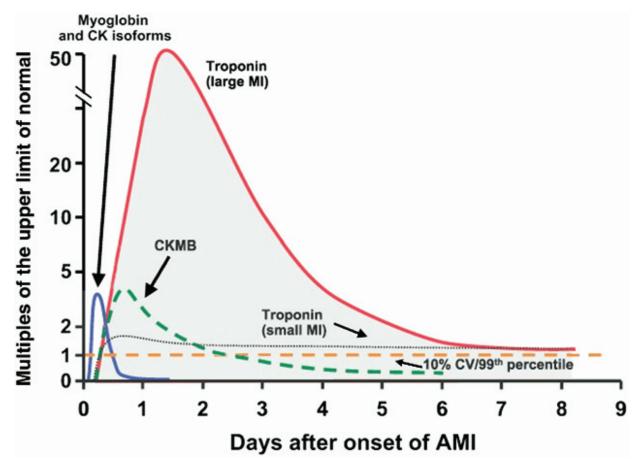
- Acute Coronary Syndrome (ACS)
 - Non-ST-elevation myocardial infarction (NSTEMI)
 - ST-elevation myocardial infarction (STEMI)
 - Unstable angina (UA)

Challenges in Cardiovascular Medicine

- Annually: 605,000 new and 200,000 recurrent acute myocardial infarctions (AMI)
 - Only ~18% have longstanding angina
- 2% to 5% myocardial infarctions are missed in the Emergency Department
- Only 46% of patients arrive at the hospital within 2 hours of symptom onset


Challenges in Cardiovascular Medicine

- AMI mortality rates (patients ≥45 years):
 - Within 1 year: 18% males, 23% females
 - Within 5 years: 36% males, 47% females
- Appropriate triage and accurate diagnoses/treatment impact mortality downstream



Cardiac Troponin Complex Consists of Three Regulatory Proteins

Troponin Elevations are Greater and Persist Over Longer Time Periods

*TnT elevations persist longer than TnI due to increased mass

Fourth Universal Definition of Myocardial Infarction

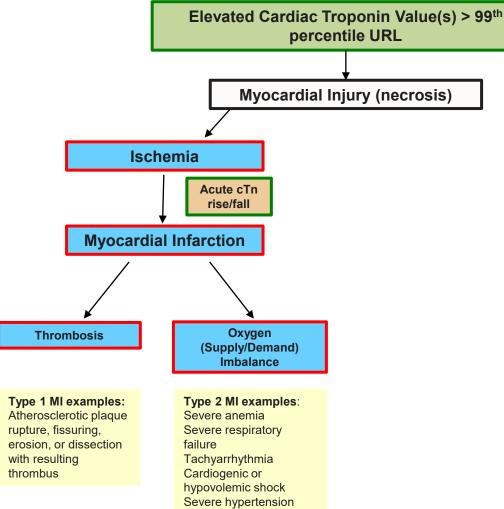
- Detection of a rise and/or fall of cardiac biomarkers (preferably troponin) with at least 1 value above the 99th percentile upper reference limit (URL) together with evidence of myocardial ischemia and at least 1 of the following:
 - Ischemic symptoms
 - ECG changes indicative of new ischemia
 - Pathological Q waves
 - Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality
 - IC thrombus identified by angiography or autopsy
- Timing is essential, serial testing recommended

AACC

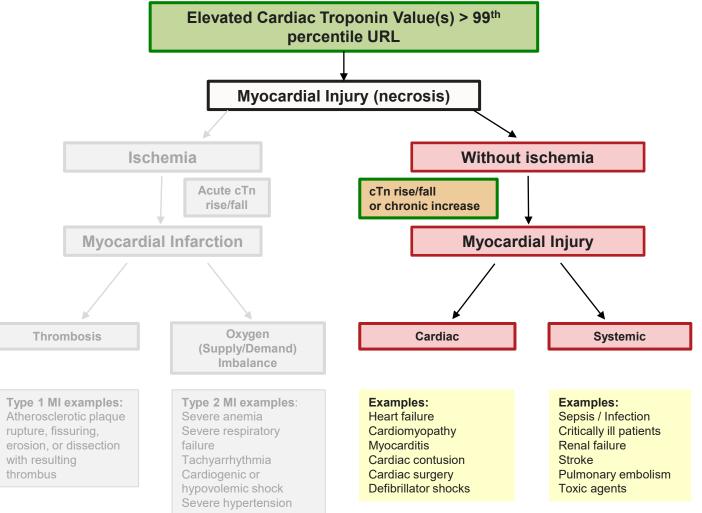
Better health through laboratory medicine.

Myocardial Injury Differs From Acute Myocardial Infarction

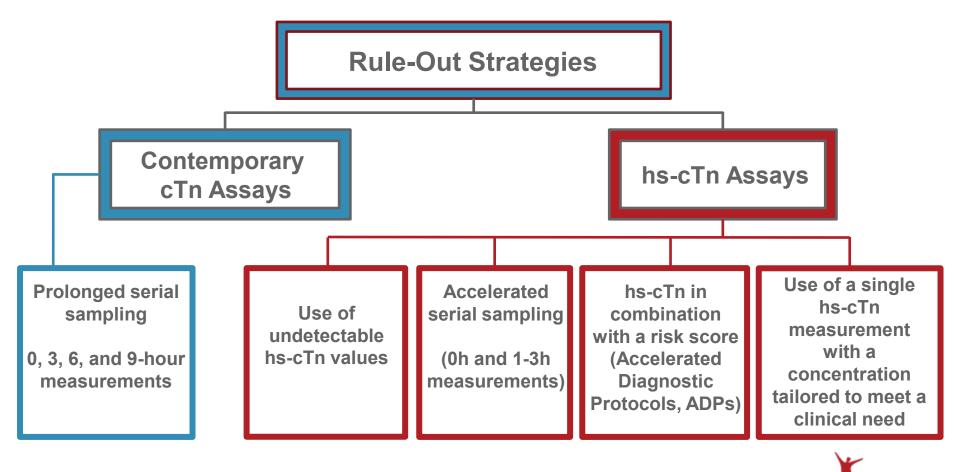
Criteria for Myocardial Injury


 The term myocardial injury should be used when there is evidence of elevated cTn values with at least one value > 99th percentile (sex-specific) URL (new) Criteria for Acute MI

The term **acute MI** should be used when there is acute myocardial injury with clinical evidence (symptoms, ECG, imaging) of acute myocardial ischemia with detection of a rise and/or fall of cTn with at least one value > 99th sex-specific percentile used as the URL


Myocardial Injury vs. Acute Myocardial Infarction

Myocardial Injury vs. Acute Myocardial Infarction


"High-Sensitivity" terminology reflects the analytical characteristics of the assay and NOT a difference in the cardiac troponin measured.

Acceptance Designation	Total Precision at 99 th Percentile
Guideline Acceptable	10%
Clinically Usable	>10 to <u><</u> 20%
Not Acceptable	> 20%
Assay Designation	Measurable Normal Values of Males and Females Below the 99 th Percentile
Level 4 - 3rd gen hs	<u>></u> 95%
Level 3 - 2nd gen hs	75 to < 95%
Level 2 - 1st gen hs	50 to < 75%
Level 1 - Contemporary	< 50%

Rapid Rule-Out and Rule-In of Acute Myocardial Infarction is a Key Benefit of hs-cTn Assays

Report High-Sensitivity Troponin Results Using Whole Numbers (ng/L)

- A contemporary cTn assay result of 0.014 µg/L will be 14 ng/L for an hs-cTn assay
- This designation, as an expert opinion, has been supported by many Journals and is globally recognized as a way to distinguish hs-cTn assays from contemporary cTn assays

Use a Defined Reference Population to Establish 99th Percentile Concentrations with Sex-Specific Cutoffs

- Fourth Universal Definition of MI endorses sex-specific 99th percentiles, recognizing upper reference limits (URLs) are lower in women than men
- Minimum 300 males and 300 females required to define URL
- Minimum 20 males and 20 females required to verify URL
 - Use individuals representative of your geographic area
 - Ages distributed over 20y and greater
 - Ethnic and racial mix with population
- More rigorous criteria for defining/excluding normal subjects lowers the 99th percentile: a) comorbidities, b) medication use, c) surrogate biomarkers (eGFR, HbA1C, NT-proBNP/BNP)
- Statistical approach can influence 99th percentile (nonparametric, Harrel-Davis, robust)

High-Sensitivity Troponin Assays: Serial Sampling

- Serial monitoring aids in distinguishing myocardial infarction from myocardial injury
- Serial testing may provide a better means for diagnosis than use of a population-based 99th percentile
 - Fourth Universal Definition of MI supports serial 0 and 1/2/3h
 - $_{\circ}~$ Later times will not miss potential very early presenters
- Absolute changes, rather than relative (percent) changes, appear preferable for hs-cTn assays at low concentrations
- ADPs and rapid rule-out strategies relevant to implementation discussions
- Biological variation may influence interpretation of serial hs-cTn concentrations.
- Definition of a significant change ("delta") is unclear and assay dependent

Better health through

Report Results in ≤ 60 Minutes to Accelerate Clinical Diagnostic Decisions and Treatment Protocols

- Turnaround time ≤ 60 minutes from time specimen is received in the laboratory to reporting results in the electronic medical record
- Previous NACB (AACC Academy) recommendations: <60 min from time of blood collection to reporting results
- There should be interdisciplinary efforts to continuously strive to improve hs-cTn turnaround times

Recommendations for Point-of-Care (POC) Cardiac Marker Testing

- Limited number of hs-cTn POC assays available
- If turnaround time goals cannot be met in the central lab, POC is only justified in the ED
 - Educate providers that current POC assays are substantially less analytically sensitive
 - POC and central lab cTn results are not interchangeable
 - Understand how hemolysis could affect cTn results
- Quantitative results should be reported
- POC testing may also be necessary in rural/small hospital settings to be able to provide 24 / 7 service

Proper interpretation of hs-cTn results requires an understanding of the assay used at your institution

- Distinguishing acute from chronic injury is one of the major challenges of using hs-cTn assays
 - Analytics become very important to interpret serial changes
 - Analytical characteristics (high-sensitivity, contemporary, POC)
 - Analytical interferences (hemolysis, biotin)
- https://www.ifcc.org/ifcc-education-division/emdcommittees/committee-on-clinical-applications-ofcardiac-bio-markers-c-cb/

AACC

Points to Remember

- High-sensitivity troponin assays are defined by the analytical characteristics
- A single troponin result does not equal a diagnosis
 - Acute MI can be safely ruled-out within 3 hours (hs-cTn plus risk score/diagnostic pathways/ECG findings)
- Acute changes in troponin are essential for interpretation; serial changes are assay dependent
- Majority of cTn POC assays are not high-sensitivity
 - Less precise and less sensitive; results are not interchangeable with central lab cTn assays
- Education and multi-disciplinary collaboration are essential to define institutional testing practices/protocols with hs-cTn

References

- 1. Virani SS, Alonso A, Aparicio HJ, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021;143:e254-e743.
- 2. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation 2018;138:e618-e651.
- 3. Wu AHB, Christenson RH, Greene DN, et al. Clinical Laboratory Practice Recommendations for the Use of Cardiac Troponin in Acute Coronary Syndrome: Expert Opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2018;64:645–655.
- 4. Sandoval Y, Thygesen K. Myocardial Infarction Type 2 and Myocardial Injury. Clin Chem 2017;63:101-7.
- 5. <u>https://www.ifcc.org/ifcc-education-division/emd-committees/committee-on-clinical-applications-of-cardiac-bio-markers-c-cb/</u>
- 6. Apple FS, Jaffe AS, Collinson P, et al. IFCC educational materials on selected analytical and clinical applications of high sensitivity cardiac troponin assays. Clin Biochem 2015;48:201-203.
- 7. Apple FS, Collinson PO. Analytical Characteristics of High-Sensitivity Cardiac Troponin Assays. Clin Chem 2012;58:54–61.
- 8. Collinson PO, Saenger AK, Apple FS. High sensitivity, contemporary and point-of-care cardiac troponin assays: educational aids developed by the IFCC Committee on Clinical Application of Cardiac Bio-Markers. Clin Chem Lab Med 2019;57:623–632.
- 9. Saenger AK, Jaffe AS, Body R, et al. Cardiac troponin and natriuretic peptide analytical interferences from hemolysis and biotin: educational aids from the IFCC Committee on Cardiac Biomarkers (IFCC C-CB). Clin Chem Lab Med 2019;57:633–640.
- 10. Apple FS, Fantz CR, Collinson PO. Implementation of High-Sensitivity and Point-of-Care Cardiac Troponin Assays into Practice: Some Different Thoughts. Clin Chem 2021;67:70-78.

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: No disclosures
- Consultant or Advisory Role: Compensated Consultancy with Radiometer
- Stock Ownership: No disclosures
- Honoraria: No disclosures
- **Research Funding:** No disclosures
- **Expert Testimony:** No disclosures
- Patents: No disclosures

AACC

Better health through laboratory medicine.

Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

