High-Sensitivity Cardiac Troponin

Amy K. Saenger, PhD, DABCC

Hennepin County Medical Center / University of Minnesota
Minneapolis, MN, USA

DOI: 10.15428/CCTC.2021.333355
Challenges in Cardiovascular Medicine

- **Acute Coronary Syndrome (ACS)**
 - Non-ST-elevation myocardial infarction (NSTEMI)
 - ST-elevation myocardial infarction (STEMI)
 - Unstable angina (UA)
Challenges in Cardiovascular Medicine

• Annually: 605,000 new and 200,000 recurrent acute myocardial infarctions (AMI)
 • Only ~18% have longstanding angina

• 2% to 5% myocardial infarctions are missed in the Emergency Department

• Only 46% of patients arrive at the hospital within 2 hours of symptom onset
Challenges in Cardiovascular Medicine

- AMI mortality rates (patients ≥45 years):
 - Within 1 year: 18% males, 23% females
 - Within 5 years: 36% males, 47% females
- Appropriate triage and accurate diagnoses/treatment impact mortality downstream
Cardiac Troponin Complex Consists of Three Regulatory Proteins
Troponin Elevations are Greater and Persist Over Longer Time Periods

*TnT elevations persist longer than TnI due to increased mass
Fourth Universal Definition of Myocardial Infarction

- Detection of a **rise and/or fall of cardiac biomarkers (preferably troponin)** with **at least 1 value above the 99th percentile upper reference limit (URL)** together with evidence of myocardial ischemia and at least 1 of the following:
 - Ischemic symptoms
 - ECG changes indicative of new ischemia
 - Pathological Q waves
 - Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality
 - IC thrombus identified by angiography or autopsy
- Timing is essential, **serial testing recommended**
Myocardial Injury Differs From Acute Myocardial Infarction

Criteria for Myocardial Injury

- The term **myocardial injury** should be used when there is evidence of elevated cTn values with at least one value > 99th percentile (sex-specific) URL (new)

Criteria for Acute MI

- The term **acute MI** should be used when there is acute myocardial injury with clinical evidence (symptoms, ECG, imaging) of acute myocardial ischemia with detection of a rise and/or fall of cTn with at least one value > 99th sex-specific percentile used as the URL
Myocardial Injury vs. Acute Myocardial Infarction

- Elevated Cardiac Troponin Value(s) > 99th percentile URL
- Myocardial Injury (necrosis)
 - Ischemia
 - Acute cTn rise/fall
 - Myocardial Infarction
 - Thrombosis
 - Oxygen (Supply/Demand) Imbalance

Type 1 MI examples:
- Atherosclerotic plaque rupture, fissuring, erosion, or dissection with resulting thrombus

Type 2 MI examples:
- Severe anemia
- Severe respiratory failure
- Tachyarrhythmia
- Cardiogenic or hypovolemic shock
- Severe hypertension
Myocardial Injury vs. Acute Myocardial Infarction

Elevated Cardiac Troponin Value(s) > 99th percentile URL

Myocardial Injury (necrosis)

Ischemia

Acute cTn rise/fall

Myocardial Infarction

Thrombosis

Oxygen (Supply/Demand) Imbalance

Without ischemia

cTn rise/fall or chronic increase

Myocardial Injury

Cardiac

Examples:
- Heart failure
- Cardiomyopathy
- Myocarditis
- Cardiac contusion
- Cardiac surgery
- Defibrillator shocks

Systemic

Examples:
- Sepsis / Infection
- Critically ill patients
- Renal failure
- Stroke
- Pulmonary embolism
- Toxic agents

Type 1 MI examples:
- Atherosclerotic plaque rupture, fissuring, erosion, or dissection with resulting thrombus

Type 2 MI examples:
- Severe anemia
- Severe respiratory failure
- Tachyarrhythmia
- Cardiogenic or hypovolemic shock
- Severe hypertension
“High-Sensitivity” terminology reflects the analytical characteristics of the assay and NOT a difference in the cardiac troponin measured.

<table>
<thead>
<tr>
<th>Acceptance Designation</th>
<th>Total Precision at 99<sup>th</sup> Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideline Acceptable</td>
<td>10%</td>
</tr>
<tr>
<td>Clinically Usable</td>
<td>>10 to ≤ 20%</td>
</tr>
<tr>
<td>Not Acceptable</td>
<td>> 20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assay Designation</th>
<th>Measurable Normal Values of Males and Females Below the 99<sup>th</sup> Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 4 - 3rd gen hs</td>
<td>≥ 95%</td>
</tr>
<tr>
<td>Level 3 - 2nd gen hs</td>
<td>75 to < 95%</td>
</tr>
<tr>
<td>Level 2 - 1st gen hs</td>
<td>50 to < 75%</td>
</tr>
<tr>
<td>Level 1 - Contemporary</td>
<td>< 50%</td>
</tr>
</tbody>
</table>
Rapid Rule-Out and Rule-In of Acute Myocardial Infarction is a Key Benefit of hs-cTn Assays

Rule-Out Strategies

Contemporary cTn Assays
- Prolonged serial sampling
 - 0, 3, 6, and 9-hour measurements
- Use of undetectable hs-cTn values

hs-cTn Assays
- Accelerated serial sampling
 - (0h and 1-3h measurements)
- hs-cTn in combination with a risk score (Accelerated Diagnostic Protocols, ADPs)
- Use of a single hs-cTn measurement with a concentration tailored to meet a clinical need
Report High-Sensitivity Troponin Results Using Whole Numbers (ng/L)

• A contemporary cTn assay result of 0.014 μg/L will be 14 ng/L for an hs-cTn assay

• This designation, as an expert opinion, has been supported by many Journals and is globally recognized as a way to distinguish hs-cTn assays from contemporary cTn assays
Use a Defined Reference Population to Establish 99th Percentile Concentrations with Sex-Specific Cutoffs

- Fourth Universal Definition of MI endorses sex-specific 99th percentiles, recognizing upper reference limits (URLs) are lower in women than men
- Minimum 300 males and 300 females required to define URL
- Minimum 20 males and 20 females required to verify URL
 - Use individuals representative of your geographic area
 - Ages distributed over 20y and greater
 - Ethnic and racial mix with population
- More rigorous criteria for defining/excluding normal subjects lowers the 99th percentile: a) comorbidities, b) medication use, c) surrogate biomarkers (eGFR, HbA1C, NT-proBNP/BNP)
- Statistical approach can influence 99th percentile (non-parametric, Harrel-Davis, robust)
High-Sensitivity Troponin Assays: Serial Sampling

- Serial monitoring aids in distinguishing myocardial infarction from myocardial injury
- Serial testing may provide a better means for diagnosis than use of a population-based 99th percentile
 - Fourth Universal Definition of MI supports serial 0 and 1/2/3h
 - Later times will not miss potential very early presenters
- Absolute changes, rather than relative (percent) changes, appear preferable for hs-cTn assays at low concentrations
- ADPs and rapid rule-out strategies relevant to implementation discussions
- Biological variation may influence interpretation of serial hs-cTn concentrations.
- Definition of a significant change ("delta") is unclear and assay dependent
Report Results in ≤ 60 Minutes to Accelerate Clinical Diagnostic Decisions and Treatment Protocols

• Turnaround time ≤ 60 minutes from time specimen is received in the laboratory to reporting results in the electronic medical record

• Previous NACB (AACC Academy) recommendations: <60 min from time of blood collection to reporting results

• There should be interdisciplinary efforts to continuously strive to improve hs-cTn turnaround times
Recommendations for Point-of-Care (POC) Cardiac Marker Testing

• Limited number of hs-cTn POC assays available
• If turnaround time goals cannot be met in the central lab, POC is only justified in the ED
 • Educate providers that current POC assays are substantially less analytically sensitive
 • POC and central lab cTn results are not interchangeable
 • Understand how hemolysis could affect cTn results
• Quantitative results should be reported
• POC testing may also be necessary in rural/small hospital settings to be able to provide 24 / 7 service
Proper interpretation of hs-cTn results requires an understanding of the assay used at your institution

- Distinguishing acute from chronic injury is one of the major challenges of using hs-cTn assays
 - Analytics become very important to interpret serial changes
 - Analytical characteristics (high-sensitivity, contemporary, POC)
 - Analytical interferences (hemolysis, biotin)

Points to Remember

• High-sensitivity troponin assays are defined by the analytical characteristics
• A single troponin result does not equal a diagnosis
 • Acute MI can be safely ruled-out within 3 hours
 (hs-cTn plus risk score/diagnostic pathways/ECG findings)
• Acute changes in troponin are essential for interpretation; serial changes are assay dependent
• Majority of cTn POC assays are not high-sensitivity
 • Less precise and less sensitive; results are not interchangeable with central lab cTn assays
• Education and multi-disciplinary collaboration are essential to define institutional testing practices/protocols with hs-cTn
References

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: No disclosures
- Consultant or Advisory Role: Compensated Consultancy with Radiometer
- Stock Ownership: No disclosures
- Honoraria: No disclosures
- Research Funding: No disclosures
- Expert Testimony: No disclosures
- Patents: No disclosures
Thank you for participating in this Clinical Chemistry Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free Clinical Chemistry app on iTunes today for additional content!

Follow us: