Pharmacokinetics
Kamisha L. Johnson-Davis, PhD, DABCC (CC,TC), FAACC
University of Utah, Department of Pathology
ARUP Laboratories

DOI: 10.15428/CCTC.2020.322529
Learning objectives

• Describe the differences between pharmacodynamics and pharmacokinetics

• Define parameters:
 • volume of distribution (V_d)
 • half-life ($t_{1/2}$)
 • clearance (CL)
 • area under the curve (AUC)

• Contrast kinetic models for drug elimination
Applications of Pharmacokinetics

Therapeutic Drug Monitoring (TDM)
• Guide/optimize dosing
• Identify drug-drug interactions

Toxicology
• Improve patient care through directed decontamination efforts of compounds involved in adverse drug reactions
Factors that Affect Drug Therapy

- Age and Gender
- Nutrition and Environment
- Pharmacokinetics and Pharmacodynamics
- Drug-Drug or Food-Drug Interactions
- Body Weight and Pregnancy
- Disease, Infection, Inflammation
- Pharmacogenetics
Drug Therapy is impacted by Pharmacokinetics and Pharmacodynamics

- Pharmacokinetic Variability
 - Liberation
 - Absorption
 - Distribution
 - Metabolism
 - Elimination

- Adherence

Drug Dose
Drug Therapy is impacted by Pharmacokinetics and Pharmacodynamics

Drug
Dose

Adherence

Pharmacokinetic Variability

Liberation
Absorption
Distribution
Metabolism
Elimination

Pharmacodynamic Variability

Blood concentration

Receptor Interaction and Receptor Response

Clinical Effect
Liberation – related to ‘solubility’ of the drug

• Formulation (solid, enteric-coated, liquid)

• Dose and dosing interval (λ)

• Chemistry of drug – pKa, water soluble, lipid soluble

• Stability – acidic pH, breakdown from digestive enzymes

• Route of administration based on surface area and permeability – (intravenous, oral, intramuscular, subcutaneous, sublingual, transdermal, inhalation, topical, etc.)
Factors that affect Absorption

- Drug characteristics: polarity, pKa, formulation
 - Ionization
 - Protein binding
 - Passive and active drug transport

- Gastrointestinal motility influences the rate of drug absorption

- Pathology of patient - Inflammation (IBD) or other diseases can affect absorption

Only free, unionized drugs can cross membranes.
Volume of Distribution

- Theoretical volume in the body to contain the total amount of drug administered
 - Distributed at the same concentration found in serum or plasma

- Polar drugs are soluble in water - distribute to blood circulation and are primarily eliminated by the kidneys

- Nonpolar drugs are lipid soluble - typically distribute to the central nervous system, tissue and fat – eliminated in feces and bile
Bioavailability (F)

• The amount of drug that reaches systemic circulation

• Oral drugs – undergo first-pass metabolism → decrease in bioavailability

• Drugs administered IV – bypass first-pass metabolism → 100% bioavailability

• Drug bioavailability from intermuscular injection is influenced by blood perfusion in the muscle
Protein Binding

• The binding of drugs to protein carriers also affect its distribution into tissues.
 • Acidic drugs bind to albumin
 • Basic drugs bind to α_1-acid glycoprotein and lipoproteins

• Plasma protein binding – affected by disease states or acute phase reactant response

• Pharmacological activity of a drug is proportional to the free (unbound) concentration in blood.
Drug Metabolism

- Purpose – convert drugs into more hydrophilic metabolites to enhance elimination from the body

- Effects
 - Terminates pharmacological activity of drug
 - Activate pharmacological activity of a drug (codeine → morphine)
 - Decreases bioavailability (first pass metabolism)
Drug Metabolism

Phase I reactions (oxidation, reduction, hydrolysis)
 • Cytochrome P450 enzymes
 o CYP3A4/5, 2D6, 1A2, 2A6, 2B6
 o CYP2C8, 2C9, 2C19, 2D6, 2E1)
 • Monoamine oxidase (MAO)
 • Esterase
 • Alcohol dehydrogenase (ADH)
 • Aldehyde dehydrogenase (ALDH)
 • Epoxide hydrolase
 • Flavin-containing monooxygenase (FMO)
Phase II reactions –

• conjugation reactions with glutathione, glucuronide, sulfate, methyl group, acetyl group

• Glutathione S-transferases (GST)
• UDP-glucuronosyltransferases (UGT)
• Sulfotransferases (SULT)
• Methyltransferases (MT)
• N-acetyltransferases (NAT)
Drug Excretion/Elimination

• Organs involved in drug excretion:
 • Kidneys, lung, bile ducts, GI tract, skin

• Changes in renal function affects the clearance and half-life of the drug
Kinetic models

- Zero-order
- First-order
- Capacity limited
Clearance (CL) and Elimination half-life ($t_{1/2}$)

- Clearance describes the elimination of a drug from blood and the body
- Elimination half-life - the time it takes for plasma drug concentration (C) in the body to be reduced by 50%
- Important formulas
 - $Ke = $ elimination rate constant
 - $Ke = CL/V_d$
 - $t_{1/2} = \ln(2)/Ke$
Pharmacokinetic modeling: one-compartment model

Orally administered drug

- Drug rapidly distributes to tissue compartment

One-compartment

Log conc

distribution

terminal elimination

absorption

time
Pharmacokinetic modeling: two-compartment model

Orally administered drug

- Drug equilibrates slowly with peripheral tissues
Area Under the Concentration Curve (AUC)
Summary

Pharmacokinetics is useful to:

• Optimize drug dose and dosing intervals

• Identify drug-drug interactions

• Minimize the risk of drug toxicity
References:

- Tietz textbook of Clinical Chemistry and Molecular Diagnostics, Sixth edition, Nader Rifai, Andrea R. Horvath, Carl T. Wittwer
 - Chapter 40 Therapeutic Drugs and their Management
 - Chapter 44 Chapter 54 Pharmacogenetics

- Contemporary Practice in Clinical chemistry, Third edition, edited by William Clarke
 - Chapter 44, Pharmacokinetics for the Practicing Clinical Chemist
 - Chapter 45 Therapeutic Drug Monitoring
Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- **Employment or Leadership**: No disclosures
- **Consultant or Advisory Role**: No disclosures
- **Stock Ownership**: No disclosures
- **Honoraria**: No disclosures
- **Research Funding**: No disclosures
- **Expert Testimony**: No disclosures
- **Patents**: No disclosures
Thank you for participating in this Clinical Chemistry Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free Clinical Chemistry app on iTunes today for additional content!

Follow us: