Basic Nucleic Acid (NA) Preparation Steps

Release NA: Lyse cell/organism

Separate NA: From other cell or sample material, including proteins

Purify NA: Wash away unwanted material

Concentrate (optional): Any time in the process, increase the concentration of target organism or NA

Figure courtesy of Stephanie Thatcher
Nucleic Acid Preparation Considerations

- **Input**
 - Sample type
 - Sample volume
 - Cell or organism type

- **Output**
 - Sensitivity desired
 - DNA vs. RNA
 - Extent of purity
 - Batch size
 - Turn-around time
 - Complexity of procedure
Sample Factors to Consider

• Sample type (extent of purification, will inhibitors need to be removed?)
 • Protein removal may be required
 • Nucleic acid isolation efficiency may vary from sample type to sample type
• Sample volume available (consider for sensitivity)
• Sample flexibility (will multiple sample types need to be compatible with the method?)

Figure courtesy of Stephanie Thatcher
Note on Solid Samples: Pre-processing

- Solid samples include stool, tissues and swabs
 - Can clog filters
 - Can interfere with nucleic acid isolation
 - Hard to lyse
- Some pre-processing may be necessary
 - Pre-filtration
 - Chemical or enzymatic digestion
 - Dilution in liquid
 - Freeze-thaw
 - Physical grinding or other physical method
- Formalin fixed paraffin embedded tissue- paraffin removal (xylene, ethanol wash)
Lysis

- Chemical methods are common, usually salts, chaotropic salts, or detergents
- Enzymatic methods are also common using lysozyme or proteases, effective for some organisms and cells
- Mechanical or physical methods can be more effective for some sample types
 - E.g. physical shearing, bead milling, freezing or pressure

Figure courtesy of Linnea M. Baudhuin, Ph.D.
Sample Inhibition and Protein Removal

- Many samples contain unwanted proteins, such as:
 - Nucleases
 - Hemoglobin
 - Chromosomal proteins
- Large numbers of proteins can interfere with nucleic acid isolation
- Proteases (e.g. proteinase K), chaotropic salts (e.g. guanidine isothiocyanate) and detergents aid in the removal of proteins in combination with affinity methods
- Inhibitors from a sample (like stool, blood or sputum) may interfere with nucleic acid isolation or with downstream analyses
- Most procedures will easily remove most inhibitors
- To test for presence of inhibitors, dilute a sample and re-analyze. If results improve with the dilution, then there is likely inhibition
 - A more extensive preparation procedure may be required
Which Method Should be Used

- Downstream analysis of nucleic acid
- Extent of nucleic acid purity required
- Required yield of DNA/RNA
- Batch size/Throughput
- Processing speed
- Ease of operation
- Cost
- Hazardous reagents
Nucleic Acid Isolation Methods

- Liquid phase
 - Organic
 - Inorganic
- Solid phase
 - Size exclusion by gel filtration
 - Ion exchange chromatography
 - Affinity chromatography
Liquid Phase Inorganic Extraction

- Inorganic chemicals are used
 - Detergents
 - EDTA
 - Acetic acid
 - Salt (salting out)
- Cell membranes lysed with SDS
- Proteins precipitated with salt solution
- DNA is precipitated with alcohol and rehydrated
- Advantages: fast, easy, non-hazardous reagents, produces high-quality DNA
Liquid Phase Organic Extraction

- Nucleic acids have differential solubility in immiscible liquids
- Phenol:chloroform/isoamyl alcohol
- Using immiscible liquids, two layers are formed:
 - Nucleic acids in top aqueous layer
 - Proteins/lipids in interface and organic phase
- Advantages: very pure product
- Disadvantages: Manual, labor-intensive, fume hood required, hazardous reagents and waste, low throughput

Figure courtesy of Linnea M. Baudhuin, Ph.D.
Solid Phase Extraction

• Most common method
 • Utilizes minimal hazardous reagents
 • Automatable
 • Fast/high-throughput
Solid Phase Extraction: Gel Filtration

- Small molecules are retained in pores of gel matrix
- Large molecules pass through column

Figure courtesy of Linnea M. Baudhuin, Ph.D.
Solid Phase Extraction: Ion Exchange Chromatography

- Anion-exchange particle (e.g., DEAE-C)
- DNA molecule
- Salt

- Cell extract
- Ion-exchange resin
- Salt

- More salt

- Protein and RNA
- Discard

- DNA

Figure courtesy of Linnea M. Baudhuin, Ph.D.
Solid Phase Extraction: Affinity Chromatography

Any surface with a negative charge, usually silica

Lysis → Binding → Washing → Elution

Chaotropic salts
Alcohol
Low pH

Ethanol
Water

Figure courtesy of Linnea M. Baudhuin, Ph.D.
Spectrophotometric Measurement of Nucleic Acid Quantity and Quality

- Nucleic acids absorb light at 260 nm
- Protein absorbs light at 280 nm
- Beer-Lambert Law for nucleic acid quantity
 - **DNA**: $A_{260} \times 50 \times \text{dilution factor} = \mu g/mL \text{ DNA}$
 - **RNA**: $A_{260} \times 40 \times \text{dilution factor} = \mu g/mL \text{ RNA}$
- Purity of DNA:
 - $A_{260}/280$ ratio should be 1.6-2.0
 - <1.6 indicates protein contamination
 - >2.0 indicates RNA contamination
- Purity of RNA:
 - $A_{260}/280$ ratio should be 2.0-2.3
 - <1.7 indicates protein contamination
Common mistakes

• No or low nucleic acid yield
 • Repeat isolation (or process additional sample)
 • Ensure ample time allowed for sample re-suspension
 • Concentrate nucleic acid with ethanol precipitation
• Inadequate lysis for the target
• Method may be too complicated for downstream application, using unnecessary time
• Method may be inadequate, inhibitors hindering the downstream application
• Large batch sizes can require longer wait times and longer pre-processing times
Best Practices for Nucleic Acid Isolation

- Optimize the input sample volume
- Optimize the output sample volume
- Use the appropriate part of the sample for the target
- Look for user-developed protocols or ask the manufacturer how to process your sample type, they may have additional information
- Test for inhibition and extraction
- Test for cross contamination
Summary

Nucleic acid procedures can meet any need with careful consideration of the factors important for any application.
References

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership:
- Consultant or Advisory Role:
- Stock Ownership:
- Honoraria:
- Research Funding:
- Expert Testimony:
- Patents:

This slide will be completed by CCJ Staff based on disclosure form completed electronically in the submission site.
Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

Follow us: