Name: Erin K. Meyer, DO, MPH

Title: Transfusion Support in Hematopoietic Stem Cell Transplant

Affiliation: The Ohio State University College of Medicine and Nationwide Children’s Hospital

DOI: 10.15428/CCTC.2016.254359
Transfusion Support for Hematopoietic Stem Cell Transplant (HSCT)

• Overview of HSCT
 • Types
 • Conditioning Regimens
 • Engraftment

• Overview of Transfusion Support in HSCT
 • Blood Products
 • Transfusion Indications

• ABO-Incompatible HSCT
 • Transfusion Considerations
 • Complications
Two Types of Hematopoietic Stem Cell Transplant (HSCT)

1. **Allogeneic**
 - Pros: Graft versus tumor (GVT) effect; patient does not require adequate marrow; can use less intensive pre-transplant conditioning
 - Cons: Graft versus host disease (GVHD; slower recovery of immune system)

2. **Autologous**
 - Pros: No GVHD
 - Cons: No GVT; stem cells may have been previously damaged by prior treatment regimens
Overview of HSCT Sources

<table>
<thead>
<tr>
<th></th>
<th>Bone Marrow</th>
<th>Peripheral Blood</th>
<th>Umbilical Cord Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Posterior iliac crest primarily; less commonly anterior iliac crest or sternum</td>
<td>Collected after mobilization with recombinant hematopoietic growth factor and/or chemotherapy</td>
<td>Collected at time of delivery</td>
</tr>
<tr>
<td>Dose</td>
<td>2-5 x 10^8 stem cells/kg</td>
<td>2 x 10^6 stem cells/kg</td>
<td>1.5 – 3.5 x 10^7 stem cells/kg</td>
</tr>
<tr>
<td>Engraftment</td>
<td>Faster than cord but less than peripheral blood</td>
<td>Fastest</td>
<td>Slowest</td>
</tr>
<tr>
<td>T cell Content</td>
<td>Low</td>
<td>Highest (high risk of GVHD)</td>
<td>Low and immature</td>
</tr>
<tr>
<td>Other</td>
<td>Commonly used in pediatric patients</td>
<td>Commonly used in adults and autologous</td>
<td>Mainly for allogeneic; rising use in pediatric and adult</td>
</tr>
</tbody>
</table>
Allogeneic Transplants: Types of Conditioning Regimens

<table>
<thead>
<tr>
<th>Description</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| **Myeloablative** | High dose chemotherapy and/or total body irradiation (TBI) | • Kills underlying tumor
• Suppress host immunity (allogeneic transplant) | • Very immunosuppressive
• Toxic to elderly and very young
• Longer transfusion requirements – delayed engraftment |
| **Nonmyeloablative or Reduced-Intensity Conditioning (RIC)** | Less intensive chemotherapeutic or TBI conditioning regimens | • Induce enough immunosuppression to allow engraftment and prevent rejection
• Relies on allogeneic GVT
• Less transfusion requirements | • Less tumor control |
Engraftment: Definitions

- **RBC**: 1% reticulocytes in peripheral blood or on day of last transfusion with no transfusions for 30 days

- **Platelets**: $\geq 20,000/\mu$L for 3 consecutive days without transfusion

- **Neutrophils**: Absolute neutrophil count (ANC) of $>500/\mu$L for 3 consecutive days
Peri/Post-Transplant Transfusion Thresholds

- RBC transfusion support until engraftment (~6 weeks)
 - Stable patient threshold: 7-8 g/dL
 - Cardiac patient threshold: > 8g/dL
- Autologous HSCT: maintain adequate erythropoietin levels and require less RBC support
- Factors affecting length of support:
 - Stem cell dose in graft
 - ABO incompatible grafts
 - Myelosuppressive regimens
 - Incidence of GVHD
Peri/Post-Transplant Transfusion Thresholds

• Platelet transfusion support:
 • Threshold 10,000/uL for nonbleeding patient
 • Threshold > 20,000/uL with:
 o Heparin therapy, GVHD, Viral Infection
 • Threshold >50,000/uL for active bleeding

• Factors affecting length of support:
 • Allogeneic HSCT issues: unrelated donor delays engraftment as does use of bone marrow as source
 • Presence of acute GVHD, VOD, or CMV infection
 • Stem cell dose in graft
 • Methotrexate prophylaxis used for GVHD
Granulocyte Transfusions

- HSCT patients have periods of severe neutropenia
- Indications for granulocyte transfusions:
 - Absolute neutrophil count <500/uL
 - Bacterial sepsis unresponsive to antibiotic therapy
 - Disseminated fungal or yeast infection

- Minimum dose of granulocytes: 1×10^{10}/infusion
 - Transfuse daily until infection resolves or neutrophil counts recover
The RING study: A Randomized Controlled Trial of GCSF-Stimulated Granulocytes in Granulocytopenic Patients

• Randomized controlled trial to evaluate efficacy of granulocyte transfusions

• Subjects eligible for the study:
 • Neutropenia (ANC<500)
 • Proven/probable/presumed bacterial or fungal infection

• Subjects randomized to receive either:
 • Standard antimicrobial therapy
 • Standard antimicrobial therapy plus daily granulocyte transfusions from normal donors stimulated with G-CSF and dexamethasone

• Primary endpoint: survival plus a microbial response

• **Outcome**: differences in primary endpoint success rates for both arms were not statistically significantly different
 • Trial had low accrual so power to detect clinical effect was low
ABO-Incompatible HSCT

4 Types of Compatibility Between Donor and Recipient:

1. Compatible
2. Major Incompatibility
3. Minor Incompatibility
4. Bidirectional Incompatibility
Types of ABO - Incompatible HSCT

Figure 1: Schematic representation of major, minor, and bidirectional ABO incompatibility between donor and recipient in allogeneic HSCT. D represents the HSCT donor and R represents the HSCT recipient.
Potential ABO Combinations Potentially Existing Between Donors and Recipients for HSCT

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Donor</th>
<th>O</th>
<th>A</th>
<th>B</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Compatible</td>
<td>Major</td>
<td>Major</td>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Minor</td>
<td>Compatible</td>
<td>Bidirectional</td>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Minor</td>
<td>Bidirectional</td>
<td>Compatible</td>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
<td>Compatible</td>
<td></td>
</tr>
</tbody>
</table>
ABO Compatibility in HSCT

<table>
<thead>
<tr>
<th>Mismatch Type</th>
<th>Potential clinical manifestations</th>
<th>Potential interventions</th>
</tr>
</thead>
</table>
| **Major** | • Acute hemolysis during stem cell infusion
 • Delayed RBC engraftment
 • Pure red cell aplasia | • Red cell depletion of stem cell component especially bone marrow
 • Isohemagglutinin reduction in recipient by therapeutic plasma exchange
 • Erythropoiesis-stimulating agents |
| **Minor** | • Acute hemolysis during stem cell infusion
 • Delayed hemolysis from donor passenger lymphocytes | • Plasma reduction of stem cell component
 • Serial monitoring of blood counts, DAT, hemolysis panel Day 5-15 post HSCT |
| **Bidirectional** | • Immediate hemolysis caused by donor’s and/or recipient’s isoheagglutinins
 • Delayed hemolysis caused by either donor’s and/or recipient’s isoheagglutinins | • Combination of practices used in minor and major ABO incompatibility |
Transfusion Support in HSCT

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Donor</th>
<th>Pre-Transplant Phase</th>
<th>Transplant Phase</th>
<th>Post-Engraftment Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>A</td>
<td>Recipient</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>O</td>
<td>B</td>
<td>Recipient</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>O</td>
<td>AB</td>
<td>Recipient</td>
<td>O</td>
<td>AB</td>
</tr>
<tr>
<td>A</td>
<td>O</td>
<td>Recipient</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>Recipient</td>
<td>O</td>
<td>AB</td>
</tr>
<tr>
<td>A</td>
<td>AB</td>
<td>Recipient</td>
<td>A</td>
<td>AB</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>Recipient</td>
<td>O</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>Recipient</td>
<td>O</td>
<td>AB</td>
</tr>
<tr>
<td>B</td>
<td>AB</td>
<td>Recipient</td>
<td>B</td>
<td>AB</td>
</tr>
<tr>
<td>AB</td>
<td>O</td>
<td>Recipient</td>
<td>O</td>
<td>AB</td>
</tr>
<tr>
<td>AB</td>
<td>A</td>
<td>Recipient</td>
<td>A</td>
<td>AB</td>
</tr>
<tr>
<td>AB</td>
<td>B</td>
<td>Recipient</td>
<td>B</td>
<td>AB</td>
</tr>
</tbody>
</table>
Conclusions

- HSCT is used in the treatment of many different hematological and non-hematological diseases

- Transfusion support is varied depending on source of stem cell graft and conditioning regimen

- The ABO blood group system is not a barrier to successful allogeneic HSCT transplantation

- There must be a clear understanding of potential adverse events for ABO-incompatible HSCT

- Clear communication between the transplant program, HSC processing laboratory, and blood bank is required
References

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- **Employment or Leadership**: None Declared
- **Consultant or Advisory Role**: None Declared
- **Stock Ownership**: None Declared
- **Honoraria**: None Declared
- **Research Funding**: None Declared
- **Expert Testimony**: None Declared
- **Patents**: None Declared
Thank you for participating in this Clinical Chemistry Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free Clinical Chemistry app on iTunes today for additional content!

Follow us: