

Better health through laboratory medicine.

PEARLS OF LABORATORY MEDICINE

Lactate Dehydrogenase: Analytical Aspects

Chesinta Voma, PhD.

University of Louisville Hospital

DOI: 10.15428/CCTC.2015.248500

Lactate Dehydrogenase (LD): A Ubiquitous Enzyme

LD Isoenzymes

Isoenzymes	Subunit Composition		Tissue Distribution	Approx. % in Serum
LD-1	H ₄		Heart, RBCs, Kidney	17 – 27%
LD-2	H_3M_1		Heart, RBCs, Kidney	27 – 37%
LD-3	H_2M_2		Lungs	18 – 25%
LD-4	H_1M_3		Liver, Muscle	8 – 16 %
LD-5	M_4	88	Liver, Skeletal Muscle	6 – 16%

Reproduced with permission from (2).

Pathological Diseases Related to LD Testing

Blood (Plasma / Serum)	Body Fluids	Urine
Cardiac and hepatic diseases (3)	Differentiate bacterial vs. viral meningitis (5,6)	Malignant prostate tumor (7)
Tumors of the lung and kidney (4)	Viral meningitis: - CSF Lactate ≤ 3 mmol/L Acute bacterial meningitis: - CSF Lactate ≥ 6 mmol/L	Bladder malignancies <i>(3)</i>

Clinical Utility of Measuring LD Isoenzymes

- Limited utility today
- Ascitic LD isoenzyme pattern observed in:
 - Cirrhosis
 - Spontaneous bacterial peritonitis
 - Congestive heart failure
 - Tuberculosis
 - Malignancy

Specimen Collection: Points to Remember

Compatible Anticoagulants	Incompatible Anticoagulants
Ammonium Heparin	EDTA For the reverse reaction: Pyruvate→ Lactate
Lithium Heparin	Potassium Oxalate
Sodium Heparin	Sodium Citrate

*LD is extremely sensitive to hemolysis. LD may be falsely elevated due to in vivo or in vitro hemolysis or in patients with elevated platelet counts

Better health through laboratory medicine.

Analytical Methods to Quantitate LD

Analyte Measured	Method	Advantages	Disadvantages
Total LD	Kinetic (10)	Speed,InexpensiveAdaptable to automation	Unable to quantitate isoenzymes, if needed
LD Isoenzymes	Electrophoresis (10)	 Patterns are directly observable All isoenzymes are resolved in a single procedure 	Time-consuming

Measurement of Total LD: Kinetic Method

Better health through laboratory medicine.

Forward or Reverse Kinetic Reaction?

Forward Reaction:	Reverse Reaction:
Lactate→ Pyruvate	Pyruvate→ Lactate
Used by 3,589 laboratories (2015	Used by 629 laboratories (2015 CAP
CAP Survey Data)	Survey Data)
Lactate is a more specific substrate for the enzyme	Pyruvate is less specific, serves as a substrate for pyruvate dehydrogenase
Most commonly used in electrophoretic separation of isoenzymes, allows detection of fluorescent NADH	Less commonly used in electrophoretic separation

*Forward reaction is preferred and recommended by the IFCC

Enzyme Activity and Michaelis-Menten Kinetics

- LD-1: high affinity for lactate, allosterically inhibited by high levels of pyruvate
 - LD-5: low affinity (higher Km) but high capacity for pyruvate, not allosterically inhibited
- LD-2, 3, and 4: intermediate activities

Enzyme Kinetics

Stability of LD

- LD isoenzymes are more stable at room temperature (7)
- NAD+ or GSH content increases sera stability
- Should be stored at -90°C for long-term storage (12)
- Freeze/thaw cycles should be avoided (12)

Summary

- LD is a ubiquitous glycolytic enzyme
- Predominantly intracellular, primarily utilized as a marker of cellular & tissue damage
- Catalyzes the reversible oxidation of lactate to pyruvate
- Enzyme activity is based on differences in catalytic properties and structural stability
- LD activity can be measured using either the forward reaction (i.e., increase A340) or reverse reaction (i.e., decrease A340)

References

- 1. Gladden LB. Lactic Acid: New Roles in the New Millennium. PNAS 2001;98:395-397
- 2. Pagana KD. Mosby's Manual of Diagnostic and Laboratory Tests. St. Louis: Mosby, Inc., 1998.
- 3. Rosnowska M, Sawicki Z, Krawczyynski J. Inhibition of lactate dehydrogenase isoenzymes activity by potassium oxalate and urea in some liver diseases. Clin Chem Acta 1968; 20:7-10.
- 4. Tietz Textbook of Clinical Chemistry. Fourth edition. Edited by CA Burtis, ER Ashwood, DE Bruns. Philadelphia, WB Saunders Company, 2006, pp 601-603.
- 5. Nand N, Sharma M, Saini D. Evaluation of LDH in cases of meningitis. Indian J Med Sci 1993; 47:96-100.
- 6. Bailey EM, Domenico P, Cunha BA. Bacterial or viral meningitis: measuring lactate in CSF can help you know quickly. Postgrad Med 1990;88:217-23.
- 7. Beckman Coulter Synchron CX® System Chemistry Information Sheet.
- 8. Servinc. A, Sari. R, Fadillioglu E, et al. The Utility of Lactate Dehydrogenase Isoenzyme Pattern in the Diagnostic Evaluation of Malignant and Nonmalignant Ascites. J Nat Med Asc 2005; 97(1)
- 9. Masato M. Lactate dehydrogenase isoenzymes. J Chromatogr A 1988; 429:373-398.
- 10. Novoa WB, Wirier AD, Glaid AJ, et al. Lactic dehydrogenase Inhibition by oxamate and by oxalate. J Biol Chem 1959; 234:1143-8.
- 11. Vitros Instructions for Use Lactate Dehydrogenase. REF: 838 4489
- 12. Shain SA, Boesei RW, Klipper RW, Lancaster CM. Creatine Kinase and Lactate Dehydrogenase: Stability of Isoenzymes and their Activity in Stored Human Plasma and Prostatic Tissue Extracts and Effect of Sample Dilution. Clin Chem 1983; 29:832-835.

AACC

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: None declared
- Consultant or Advisory Role: None declared
- Stock Ownership: None declared
- Honoraria: None declared
- Research Funding: None declared
- Expert Testimony: None declared
- Patents: None declared

AACC

Better health through laboratory medicine.

Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

