Challenges in Blood Group Alloantibody Detection: the Antibody Screen

Christopher A. Tormey, MD

Yale University School of Medicine
VA Connecticut Healthcare System

DOI: 10.15428/CCTC.2015.256370
Non-ABO alloimmunization: clinical significance

Alloimmunization to non-ABO blood group antigens is a highly relevant issue in laboratory medicine

- About 1-3% of general patients possess such antibodies
- Higher rates (upwards of 40%) reported in chronically-transfused groups

Alloantibodies create issues for transfusion practice

- Delay timely provision of compatible red blood cells (RBCs)
- Increase risks for hemolysis
Transfusion fatalities reported to the FDA, FY2005-13

- Abs associated with fatalities: anti-Jk^a, -Jk^b, -K, -E, -c, -C, -Fy^a, -Fy^b, -Js^a, -Js^b, -S, -N, -V, -Co^a, -I, HTLA, and others

Chart created with data from (11).
Morbidity & mortality related to challenges in antibody detection

One of the major causes for the high rates of morbidity/mortality observed with non-ABO antibodies is difficulties in their detection.

Three fundamental challenges in antibody detection:
- Alloantibody evanescence
- Transfusion record fragmentation
- Missed opportunities for antibody detection

We will also briefly discuss some strategies to overcome these challenges.
Alloantibody Evanescence

• The disappearance (evanescence) of blood group antibodies over time is a well-known phenomenon to most blood bankers

• A few smaller studies estimated that about one-quarter to one-third of antibodies become undetectable over time

• A more recent investigation was done to better quantify evanescence rates
 • The strategy involved examining only antibodies developed after a transfusion at the study facility
Alloantibody Evanescence

- Nearly half (48.6%, 108/222) of hospital-acquired antibodies disappeared from detection over time
- The more follow-up testing performed, the higher the evanescence rates
- Evanescence was antibody specific
 - Highest rates seen with anti-Jka

Chart created with data from (5).
Evanescence: A Function of Assay Sensitivity?

- Antibody detection, in large part, can be dependent on the method of testing/screening used

- In general:
 - Tube methods = lowest sensitivity
Evanescence: A Function of Assay Sensitivity

- More recently developed platforms offer greater sensitivity
- Acrylamide gel & solid phase = moderate-high sensitivity

- ELISA & flow cytometry = highest sensitivity
 - These platforms not routinely available in most lab settings
Transfusion Record Fragmentation

- It is not uncommon for patients to be treated at multiple medical facilities

- Patient movement from facility to facility can create risks for alloimmunized patients
 - No robust system for communication of alloantibody info
 - Because of evanescence, this can create ‘fragmentation’ of the transfusion/antibody record
How often do patients seek transfusion at >1 Facility?

23% of patients reported receiving a transfusion at another facility

Charts created with data from (7).
Alloantibody Discrepancies

- 200 alloimmunized patients at Hospital A were extracted from an antibody database.
- Antibody information for these patients was investigated at nearby Hospital B.
- 21% (42/200) underwent a screen at Hospital B.
- 64% (27/42) of these had a discrepancy in records.

Lack of antibody detection was the most common discrepancy.

Chart created with data from (7).
Missed Alloimmunization

- Historical data indicate that it takes about one month before even the most immunogenic antigens (e.g., D, K) can induce a detectable antibody response.

- How often do patients undergo follow-up testing after transfusion?
 - Is this testing adequately timed to detect non-ABO antibodies?
Missed Alloimmunization

- We performed a pilot study examining >550 consecutive transfusions to determine if follow-up testing was done.
- For these RBC transfusions, about a quarter had no follow-up testing.
- Another quarter had follow-up <30 days after transfusion.

Chart created with data from (8).
Conclusions About Challenges to Alloantibody Detection

• Antibodies evanesce (disappear from detection) at rates approaching 65% >5 years after initial development

• Upwards of 25-30% of patients will seek care at multiple facilities, resulting in fragmentation of their records
 • This causes significant antibody record discrepancies

• Real-world blood bank testing is not designed to optimally detect many blood group antibodies
 • Half of RBC transfusions have inadequate follow-up testing
How to overcome antibody detection challenges

• **Evanescence**
 - Provide patients with wallet cards or alert bracelets re: antibody history
 - Develop/utilize higher sensitivity tests

• **Record fragmentation**
 - Obtain transfusion history from patients; contact other hospitals for that history
 - Enroll in (or create) local or regional antibody registries

• **Missed alloimmunization**
 - Promote routine / regular follow-up for transfused patients

• **Prevention of alloimmunization**
 - Provide pheno- or genotyped matched RBCs for transfusion, especially for chronically-transfused groups
References

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- **Employment or Leadership**: None declared
- **Consultant or Advisory Role**: None declared
- **Stock Ownership**: None declared
- **Honoraria**: None declared
- **Research Funding**: None declared
- **Expert Testimony**: None declared
- **Patents**: None declared
Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

Follow us: