Abnormal Hb A1c Result from a Diabetic Patient Leads to Unexpected Diagnosis

Nicole J. Mathewson,a,b Lauren N. Pearson,a,b and Kelly Doyle a,b,*

*Department of Pathology, University of Utah, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.

Address correspondence to this author at: ARUP Laboratories, 500 S Chipeta Way, Salt Lake City, UT 84108, United States. E-mail Kelly.doyle@path.utah.edu.

CASE DESCRIPTION

A 70-year-old male with a history of type 2 diabetes mellitus (T2DM) presented to an outpatient laboratory for routine venipuncture to evaluate glycemic management and cardiovascular disease risk. The patient arrived at the laboratory alert, with no apparent distress. Hemoglobin A1c (Hb A1c) testing was performed along with a lipid panel for routine screening of lipid disorders. The lipid panel results demonstrated mixed hyperlipidemia, showing increased triglycerides and decreased HDL cholesterol. The Hb A1c analysis by capillary electrophoresis (CE) on the Sebia CAPILLARYS 3 TERA instrument resulted with a flag for an atypical profile in the electropherogram and no Hb A1c value was reported. Prior Hb A1c measurements throughout the past year demonstrated Hb A1c concentration ≥6.5%, consistent with his diagnosis of T2DM, and revealed a downward trend in the Hb A1c concentration (Table 1). The patient was not receiving medical treatment or medications known to affect red blood cells or Hb A1c measurement (1). The inconclusive Hb A1c result was repeated with a different instrument and another sample from the patient, collected at a different phlebotomy location, showed similar inconclusive results as the previous specimen (Table 1). Compared to typical hemoglobin and Hb A1c migration patterns, this patient’s specimens resulted in unusual shifts in hemoglobin peak migration times as observed upon close review of the electropherogram, suggesting a potential analytical interference of the Hb A1c measurement (Fig. 1).

PATIENT FOLLOW-UP

In communications with the assay manufacturer, it was suggested that a potential cause of this type of interference could be markedly increased leukocyte counts. In sharing this information with the clinical team, it was recommended to the patient to return to the hospital to obtain a complete blood count (CBC) for evaluation. Simultaneously, we opted to test Hb A1c in 2 unrelated specimens with markedly elevated white blood cell counts (>100 k/μL; reference interval: 4.30 to 11.30 k/μL), wherein we observed similar peak shifts in the electropherograms. The patient’s follow-up test at the hospital revealed a CBC with a highly elevated leukocyte count of 175.80 k/μL, suggesting the abnormal Hb A1c result could be due to an interference caused by leukocytosis. A manual differential confirmation demonstrated elevations in myelocytes, metamyelocytes, promyelocytes, blasts, and basophils. During this hospital visit, another Hb A1c measurement was performed by CE and showed a Hb A1c concentration of 7.8%. This value correlated well with previous Hb A1c measurements and was consistent with the patient’s history of T2DM. A fasting blood glucose (FBG) was also ordered and revealed an impaired fasting glucose concentration of 144 mg/dL (reference interval: 64 to 128 mg/dL). The FBG concentration was consistent with the elevated Hb A1c concentration. Due to the significantly elevated leukocyte count, the patient was referred to the emergency department for further workup.
QUESTIONS TO CONSIDER

• What are common and uncommon interferences in Hb A₁c assays?
• What are known interference issues with the Hb A₁c CE assay?
• What patient-related preanalytical factors could influence Hb A₁c and its measurement?
• How can the laboratory rule out interferences?
• How could incorrect Hb A₁c results be misinterpreted or lead to unnecessary testing?

Table 1. Hb A₁c measurements from May 2021 to March 2022

<table>
<thead>
<tr>
<th>Date of Hb A₁c measurement</th>
<th>Hb A₁c value, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2021</td>
<td>9.0</td>
</tr>
<tr>
<td>June 2021</td>
<td>8.1</td>
</tr>
<tr>
<td>September 2021</td>
<td>7.3</td>
</tr>
<tr>
<td>March 2022—1st collection</td>
<td>"Atypical profile"; no value</td>
</tr>
<tr>
<td>March 2022—2nd collection</td>
<td>"Atypical profile"; no value</td>
</tr>
</tbody>
</table>
REFERENCE

Final Publication and Comments

The final published version with discussion and comments from the experts will appear in the July 2023 issue of *Clinical Chemistry*. To view the case and comments online, go to https://academic.oup.com/clinchem/issue/69/7 and follow the link to the Clinical Case Study and Commentaries.

Educational Centers

If you are associated with an educational center and would like to receive the cases and questions 1 month in advance of publication, please email clinchemed@aacc.org.

All previous Clinical Case Studies can be accessed and downloaded online at https://www.aacc.org/science-and-research/clinical-chemistry/clinical-case-studies

AACC is pleased to allow free reproduction and distribution of this Clinical Case Study for personal or classroom discussion use. When photocopying, please make sure the DOI and copyright notice appear on each copy.

AACC is a leading professional society dedicated to improving healthcare through laboratory medicine. Its nearly 10,000 members are clinical laboratory professionals, physicians, research scientists, and others involved in developing tests and directing laboratory operations. AACC brings this community together with programs that advance knowledge, expertise, and innovation. AACC is best known for the respected scientific journal *Clinical Chemistry* and the world’s largest conference on laboratory medicine and technology. Through these and other programs, AACC advances laboratory medicine and the quality of patient care.