Unexpected Hemoglobin A₁c Results

Alina-Gabriela Sofronescu,¹ Laurie M. Williams,¹ Dorinda M. Andrews,¹ and Yusheng Zhu¹*

¹Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC. ¹¹Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., MSC 908, Suite 309, Charleston, SC 29425. Fax 843-792-0424; e-mail zhuyu@musc.edu.

²Nonstandard abbreviations: Hb, hemoglobin; CE-HPLC, cation-exchange high performance liquid chromatography; Hb S, sickle cell Hb.

CASE

A 52-year-old woman with a medical history of hepatitis B, hyperlipidemia, hypertension, anemia, and depression presented to the internal medicine clinic for a routine visit. Laboratory tests 3 months previously had revealed an impaired fasting glucose concentration of 5.9 mmol/L (106 mg/dL) [reference interval, 3.9 –5.6 mmol/L (70 –100 mg/dL)]. Therefore, a hemoglobin (Hb)² A₁c analysis was performed. The initial Hb A₁c evaluation by cation-exchange HPLC (CE-HPLC) (Hb A₁c Program on the VARIANT II TURBOlink System; Bio-Rad Laboratories) showed an Hb A₁c value of 115.8% (reference interval, 4.0%–6.0%) (Fig. 1). In an effort to determine if the unusual Hb A₁c result was due to potential hemoglobinopathies, we performed an Hb variant analysis with the Bio-Rad VARIANT CE-HPLC β-Thanassemia Short Program. The analysis revealed the absence of Hb A and the presence of sickle cell Hb (Hb S) (37.4%), along with normal Hb A₂ (3.2%) and Hb F (<1.0%) (Fig. 2). Also evident was another large peak (53.0%) that eluted earlier than Hb A, which we called P₂. This study suggested the presence of an Hb variant with a chromatographic retention time virtually identical to that of Hb A₁c, in addition to Hb S (Figs. 1 and 2). A subsequent Hb electrophoretic analysis at pH 6.0 (QuickGel Acid; Helena Laboratories) identified Hb S and another abnormal band with a mobility similar to Hb F (not shown).

PATIENT FOLLOW-UP

To identify the Hb variants, we investigated DNA sequences corresponding to the patient’s β-globin genes. This analysis identified a substitution at codon 6 [GAG to GTG (Glu to Val)] on one allele, corresponding to Hb S, and a substitution at codon 1 [GTG to GCG (Val to Ala)] on the other allele, corresponding to Hb Raleigh. The presence of these hemoglobinopathies suggested that the spurious HbA₁c result obtained with the CE-HPLC method was due to the elution of Hb Raleigh, which has a retention time similar to that of Hb A₁c. We evaluated the Hb A₁c result with a turbidimetric inhibition immunoassay (Dimension® Clinical Chemistry System; Siemens) and obtained an Hb A₁c value of 4.1%, which was not consistent with the impaired fasting glucose concentration of 5.9 mmol/L (106 mg/dL).
Clinical Case Study

![Fig. 1. CE-HPLC chromatogram for Hb A1c analysis. Hb S and an aberrant Hb A1c value of 115.8% represented the predominant Hb peaks in the chromatogram.](image1)

<table>
<thead>
<tr>
<th>Analyte ID</th>
<th>Percent</th>
<th>Time, min</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1.2</td>
<td>0.75</td>
<td>33627</td>
</tr>
<tr>
<td>F</td>
<td>0.5</td>
<td>0.94</td>
<td>16262</td>
</tr>
<tr>
<td>P2</td>
<td>53.0</td>
<td>1.30</td>
<td>1542147</td>
</tr>
<tr>
<td>A1</td>
<td>2.7</td>
<td>2.28</td>
<td>79887</td>
</tr>
<tr>
<td>Unknown 1</td>
<td>1.6</td>
<td>2.50</td>
<td>47682</td>
</tr>
<tr>
<td>A2</td>
<td>3.2</td>
<td>3.68</td>
<td>108007</td>
</tr>
<tr>
<td>S window</td>
<td>37.4</td>
<td>4.45</td>
<td>1088414</td>
</tr>
</tbody>
</table>

*Value outside of expected range: Total area = 1656306

![Fig. 2. Chromatogram of Hb variants analysis with the CE-HPLC β-Thalassemia Short Program. Hb S (37.4%), wild-type Hb A2 (3.2%), and Hb F (<1.0%) were identified, but Hb A was not detected. A large peak, which we designated P2, was detected at 53.0%.](image2)

Questions to Consider

- What are the various types of methods used for measuring Hb A1c?
- How do Hb variants interfere with each of these Hb A1c methods?
- What actions should be taken when a spurious Hb A1c result is present?

Final Publication and Comments

The final published version with discussion and comments from the experts will appear in the February 2011 issue of *Clinical Chemistry*. To view the case and comments online, go to http://wwwclinchem.org/content/vol57/issue2 and follow the link to the Clinical Case Study and Commentaries.

Educational Centers

If you are associated with an educational center and would like to receive the cases and questions 1 month in advance of publication, please email clinchem@aacc.org.
Clinical Case Study

AACC is pleased to allow free reproduction and distribution of this Clinical Case Study for personal or classroom discussion use. When photocopying, please make sure the DOI and copyright notice appear on each copy.

All previous Clinical Case Studies can be accessed and downloaded online at http://www.aacc.org/resourcecenters/casestudies/.

AACC is a leading professional society dedicated to improving healthcare through laboratory medicine. Its nearly 10,000 members are clinical laboratory professionals, physicians, research scientists, and others involved in developing tests and directing laboratory operations. AACC brings this community together with programs that advance knowledge, expertise, and innovation. AACC is best known for the respected scientific journal, Clinical Chemistry, the award-winning patient-centered web site Lab Tests Online, and the world's largest conference on laboratory medicine and technology. Through these and other programs, AACC advances laboratory medicine and the quality of patient care.