MALDI-TOF MS: a new tool to rapidly assess antibiotic susceptibility

Sören Schubert, MD
Max von Pettenkofer-Institut
Ludwig-Maximilians-University (LMU)
Munich, Germany

Learning Objectives
After this presentation, you should…
• know the principles of MALDI-TOF MS and its application in identification of microorganisms
• be able to identify and to trace the development of MALDI-TOF MS for the β-lactamase activity testing of bacteria
• record and compare facts about different approaches using MALDI-TOF MS for comprehensive antibiotic resistance testing
• be able to identify the pros and cons of using MALDI-TOF MS for resistance testing in diagnostic laboratory and will retrace possible future perspectives

MALDI-TOF MS

MALDI Biotyper
Bruker Daltonics

Vitek MS
bioMérieux
MALDI-TOF: principle
Matrix Assisted Laser Desorption/Ionization,
Time Of Flight
MALDI TOF – Identification of bacteria and fungi
E. coli
MALDI-TOF MS bacteria identification
Workflow
Identification

Antibiotic resistance testing (AST)

<table>
<thead>
<tr>
<th></th>
<th>Disc Diff.</th>
<th>Walkaway</th>
<th>Vitek 2</th>
<th>Phoenix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to result</td>
<td>12 – 24 h</td>
<td>12 – 48 h</td>
<td>7 – 18 h</td>
<td>8 – 18 h</td>
</tr>
</tbody>
</table>

MALDI-TOF MS

1. Direct detection of resistance factors
MRSA detection by MALDI-TOF MS?

MALDI TOF „detection“ of MRSA

MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages

MALDI-TOF for detection of antibiotic resistance

\rightarrow \beta\text{-lactamases (ESBL)}

\rightarrow \text{carbapenemases}
> 700 β-lactamase - subtypes

Conclusion 1:

Direct detection of resistance factors

- Detection of clonal groups
- No reliable resistance identification
 → β-lactamases, PBP2a, Van A – Van B

MALDI-TOF MS

1. Direct detection of resistance factors (e.g. PBP2a)

2. β-lactamase activity test
β-lactamase activity

Ampicillin + \(\beta \)-Lact.-neg. \(E. \) coli

Ampicillin + ESBL-\(E. \) coli

Sparber et al., 2012

Procedure

- 1 colony of fresh o/n culture
- 10 µl antibiotic solution (e.g. 0.5 µg/ml CTX)
- 1 - 2 h incubation, 37°C
- Spin down bacteria
- Supernatant on MALDI-target plate
- Mass range 100 – 1000 Da
- Calibration with suitable molecules
Cefotaxime (CTX)

\[\log \left(\frac{\sum \text{peak-intensity}_{\text{hydrolysed}}}{\sum \text{peak-intensity}_{\text{non-hydrolysed}}} \right) \]

0.5 mg/ml CAZ in 10 mM NH₄hydrogen carbonate
2 h incubation
15 µl sup plus 5 µl 0.5 ng/µl reserpine
1.5 µl spotted

\[\beta \]-lactamase-activity
No cleavage spontaneous hydrolysis
E. coli directly from positive blood cultures → ampicillin

Conclusion 2:

MALDI-TOF β-lactamase activity test

- Rapid test 1.5 – 3 h
- Automated analysis
- Directly from positive blood cultures
- Restricted to certain antibiotic resistances
 - β-lactamases, e.g. ESBL, carbapenemases
MALDI-TOF MS

1. Direct detection of resistance factors (e.g. PBP2a)
2. β-lactamase activity test
3. Antibiotic susceptibility test - phenotypic assays
 • MBT-RESIST

Phenotypic Susceptibility Testing (MBT-RESIST)

For all growing bacteria applicable

Susceptibility testing using stable isotopes

normal Lys → Control 1
heavy Lys + antibiotic → Susceptible
heavy Lys → Resistant
 → Control 2
MALDI-TOF MS

1. Direct detection of resistance factors (e.g. PBP2a)
2. β-lactamase activity test
3. Antibiotic susceptibility test - phenotypic assays
 - MBT-RESIST
 - MBT-ASTRA
3. Antibiotic susceptibility testing by phenotypic assays

Phenotypic assay without isotopes?

MALDI-TOF MS as a quantitative growth monitor

MBT-ASTRA

spectra view

Klebsiella pneumoniae

sustiable

BHI + Meropenem 8 µg/ml

BHI only

resistant

Lange et al., J Clin Microbiol. 2014
Conclusion (1)

Direct detection of resistance factors

- Detection of clonal groups
 - May help to identify distinct clonally distributed resistance factors
- False positive and negative results possible!
- (yet) no direct detection of β-lactamases, PBP2a, Van A/B, ...

Conclusion (2)

β-lactamase activity test

- Rapid test 1.5 – 3 h
- Automated analysis
- Directly from positive blood cultures
- Restricted to certain resistances
 - β-lactamases
- All β-lactamases detectable?

Conclusion (3)

Phenotypic resistance test (MBT-RESIST / MBT-ASTRA)

- Rapid tests 2 – 3 h
- Automated analysis available

- Stable Isotopes: A rather complex workflow
 → kits and cards are needed
- All bug-drug combinations analyzable?
MALDI-TOF MS for antibiotic resistance testing

Pro
- Reduction of time to result: 12 h → 2.5 h
- Phenotypic assay – irrespective of underlying molecular mechanism
- High-throughput feasible
- Low costs of consumables

Cons
- Initial culture necessary → plus 12 – 24 h
- High costs of MALDI-hardware
- (Yet) no determination of MIC values
- (Yet) no test kits available → hands on time is high

Max von Pettenkofer-Institut
- Jette Jung
- Theresa Eberl
- Christina Popp
- Julia Walker
- Christina Hamacher
- Lukas Schmidt
- Birgit Gross
- Andreas Wieser

ForBLMed

FöFoLe