Critical and Point-of-Care Testing: Real World and Emerging Applications for Improved Clinical Outcomes

CPOCT 25th International Symposium
SEPTEMBER 17-20, 2014
SAN DIEGO, CA
Clinical Overview of Coagulation Testing Issues

Adam M. Vogel, MD
Assistant Professor, Division of Pediatric Surgery
Washington University in St. Louis School of Medicine
September 19, 2014
Disclosure

I have no relevant financial or nonfinancial relationships to disclose

(I’m a surgeon)
Learning Objective

• Describe the controversies surrounding coagulation testing and monitoring in clinical medicine:
 – Trauma
 – Extracorporeal life support
Overview

• Hemostasis and coagulopathy
• “Clinical Issues”
• Trauma
• Extracorporeal life support
• Summary
Hemostasis and Coagulopathy
The “Cascade” Model

The “Cell-Based” Model

Multiple Players – Virchow’s Triad

“Balance”

Healthy individual

Developmental Hemostasis

Reference values for coagulation tests in healthy full-term infants during the first 6 months

<table>
<thead>
<tr>
<th>Tests</th>
<th>Day 1 (n)</th>
<th>Day 5 (n)</th>
<th>Day 30 (n)</th>
<th>Day 90 (n)</th>
<th>Day 180 (n)</th>
<th>Adult (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT (s)</td>
<td>13.0 ± 1.43 (61)*</td>
<td>12.4 ± 1.46 (77)**†</td>
<td>11.8 ± 1.25 (67)**†</td>
<td>11.9 ± 1.15 (62)*</td>
<td>12.3 ± 0.79 (47)*</td>
<td>12.4 ± 0.78 (29)</td>
</tr>
<tr>
<td>APTT (s)</td>
<td>42.9 ± 5.80 (61)</td>
<td>42.6 ± 8.62 (76)</td>
<td>40.4 ± 7.42 (67)</td>
<td>37.1 ± 6.52 (62)*</td>
<td>35.5 ± 3.71 (47)*</td>
<td>33.5 ± 3.44 (29)</td>
</tr>
<tr>
<td>TCT (s)</td>
<td>23.5 ± 2.38 (58)*</td>
<td>23.1 ± 3.07 (64)†</td>
<td>24.3 ± 2.44 (53)*</td>
<td>25.1 ± 2.32 (52)*</td>
<td>25.5 ± 2.86 (41)*</td>
<td>25.0 ± 2.66 (19)</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>1.83 ± 0.58 (61)*</td>
<td>3.12 ± 0.75 (77)*</td>
<td>2.70 ± 0.54 (67)*</td>
<td>2.43 ± 0.68 (60)**†</td>
<td>2.51 ± 0.68 (47)**†</td>
<td>2.78 ± 0.61 (29)</td>
</tr>
<tr>
<td>II (U/mL)</td>
<td>0.48 ± 0.11 (61)</td>
<td>0.63 ± 0.15 (76)</td>
<td>0.68 ± 0.17 (67)</td>
<td>0.75 ± 0.15 (62)</td>
<td>0.88 ± 0.14 (47)</td>
<td>1.08 ± 0.19 (29)</td>
</tr>
<tr>
<td>V (U/mL)</td>
<td>0.72 ± 0.18 (61)</td>
<td>0.95 ± 0.25 (76)</td>
<td>0.98 ± 0.18 (67)</td>
<td>0.90 ± 0.21 (62)</td>
<td>0.91 ± 0.18 (47)</td>
<td>1.06 ± 0.22 (29)</td>
</tr>
<tr>
<td>VII (U/mL)</td>
<td>0.66 ± 0.19 (60)</td>
<td>0.89 ± 0.27 (75)</td>
<td>0.90 ± 0.24 (67)</td>
<td>0.91 ± 0.26 (62)</td>
<td>0.87 ± 0.20 (47)</td>
<td>1.05 ± 0.19 (29)</td>
</tr>
<tr>
<td>VIII (U/mL)</td>
<td>1.00 ± 0.39 (60)**†</td>
<td>0.88 ± 0.33 (75)**†</td>
<td>0.91 ± 0.33 (67)**†</td>
<td>0.79 ± 0.23 (62)**†</td>
<td>0.73 ± 0.18 (47)**†</td>
<td>0.99 ± 0.25 (29)</td>
</tr>
<tr>
<td>vWF (U/mL)</td>
<td>1.53 ± 0.67 (40)**†</td>
<td>1.40 ± 0.57 (43)**†</td>
<td>1.28 ± 0.59 (40)**†</td>
<td>1.18 ± 0.44 (40)**†</td>
<td>1.07 ± 0.45 (46)**†</td>
<td>0.92 ± 0.33 (29)**†</td>
</tr>
<tr>
<td>IX (U/mL)</td>
<td>0.53 ± 0.19 (59)</td>
<td>0.53 ± 0.19 (75)</td>
<td>0.51 ± 0.15 (67)</td>
<td>0.67 ± 0.23 (62)</td>
<td>0.86 ± 0.25 (47)</td>
<td>1.09 ± 0.27 (29)</td>
</tr>
<tr>
<td>X (U/mL)</td>
<td>0.40 ± 0.14 (60)</td>
<td>0.49 ± 0.15 (75)</td>
<td>0.59 ± 0.14 (67)</td>
<td>0.71 ± 0.18 (62)</td>
<td>0.78 ± 0.20 (47)</td>
<td>1.06 ± 0.23 (29)</td>
</tr>
<tr>
<td>XI (U/mL)</td>
<td>0.38 ± 0.14 (60)</td>
<td>0.55 ± 0.16 (74)</td>
<td>0.53 ± 0.13 (67)</td>
<td>0.69 ± 0.14 (62)</td>
<td>0.86 ± 0.24 (47)</td>
<td>0.97 ± 0.15 (29)</td>
</tr>
<tr>
<td>XII (U/mL)</td>
<td>0.53 ± 0.20 (60)</td>
<td>0.47 ± 0.18 (75)</td>
<td>0.49 ± 0.16 (67)</td>
<td>0.67 ± 0.21 (62)</td>
<td>0.77 ± 0.19 (47)</td>
<td>1.08 ± 0.28 (29)</td>
</tr>
<tr>
<td>PK (U/mL)</td>
<td>0.37 ± 0.16 (45)**†</td>
<td>0.48 ± 0.14 (51)</td>
<td>0.57 ± 0.17 (48)</td>
<td>0.73 ± 0.16 (46)</td>
<td>0.86 ± 0.15 (43)</td>
<td>1.12 ± 0.25 (29)</td>
</tr>
<tr>
<td>HMW-K (U/mL)</td>
<td>0.54 ± 0.24 (47)</td>
<td>0.74 ± 0.28 (63)</td>
<td>0.77 ± 0.22 (50)*</td>
<td>0.82 ± 0.32 (46)*</td>
<td>0.82 ± 0.23 (48)*</td>
<td>0.92 ± 0.22 (29)</td>
</tr>
<tr>
<td>XIIIa (U/mL)</td>
<td>0.79 ± 0.26 (44)</td>
<td>0.94 ± 0.25 (49)*</td>
<td>0.93 ± 0.25 (44)*</td>
<td>1.04 ± 0.34 (44)*</td>
<td>1.04 ± 0.29 (41)*</td>
<td>1.05 ± 0.25 (29)</td>
</tr>
<tr>
<td>XIIIb (U/mL)</td>
<td>0.76 ± 0.23 (44)</td>
<td>1.06 ± 0.37 (47)*</td>
<td>1.11 ± 0.36 (45)*</td>
<td>1.16 ± 0.37 (44)*</td>
<td>1.10 ± 0.40 (41)*</td>
<td>0.97 ± 0.20 (29)</td>
</tr>
<tr>
<td>Plasminogen (CTA, U/mL)</td>
<td>1.95 ± 0.35 (44)</td>
<td>2.17 ± 0.38 (60)</td>
<td>1.98 ± 0.36 (52)</td>
<td>2.48 ± 0.37 (44)</td>
<td>3.01 ± 0.40 (47)</td>
<td>3.36 ± 0.44 (29)</td>
</tr>
</tbody>
</table>
“Clinical Challenges”

• Need to simplify a complex system
• Coagulation test mechanics
• In-vitro vs. In-vivo
• Different tests
• Different “flavors”
“Eye on the Prize”

• Focus on the patients = clinical outcomes

• Mortality/Survival

• Morbidity
 – Quality of life
 – Complications

• Costs
• Resource Utilization
Coagulopathy and Hemostasis

- OR, ER, ICU, IR, dialysis, outpatient clinics, etc.
- Cardiac surgery
- Transplantation
- Sepsis
- Liver failure
- Acute and chronic kidney injury
- Any really sick patient . . .
- Trauma
- Extracorporeal Life Support (ECLS)
The “Holy Grail”

• Accurate

• Precise

• Clinically meaningful
 – Tests improve outcomes

• I’d like the results 5 minutes ago please
Trauma
• 3287 patients, 391 patients transfused

• Acute coagulopathy ($\text{INR} > 1.5$) on arrival: 38%

• Mortality (+) coagulopathy 24% (vs. 4%)
The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center

John R. Hess, Allison L. Lindell, Lynn G. Stansbury, Richard P. Dutton, and Thomas M. Scalea

TRANSFUSION 2009;49:34-39

- N=23,506
- 2000-2006

Interaction of ISS and admission PLT count with mortality

![Graph showing the interaction of ISS and admission PLT count with mortality.](image)
Pediatric Patients

We conclude . . . coagulopathy is bad

Hemostatic Resuscitation
Assessment

• “Conventional coagulation” tests (CCT)
 – PT
 – INR (Measure Warfarin . . . Trauma?)
 – aPTT (Titrate Heparin . . . Trauma?)
 – Platelet count
 – Fibrinogen

• “Un-conventional” coagulation tests
 – TEG
 – ROTEM
• 20 patients
• rTEG, kTEG, CCT
• Time to results (MA)
 – rTEG: 19.2 ± 3.1 min
 – kTEG: 29.9 ± 4.3 min
 – CCT: 34.1 ± 14.5 min
• rTEG is the fastest
Timing: specimen “clocked-in” to results

- Early rTEG values (ACT, K,): 5 min
- Late rTEG values (α, MA): 15 min
- CCT: 48 min
- \(p < 0.001 \)

Transfusions

- ACT > 128 s (first to result) predicts PRBC, plasma, platelet, and MTP
- ACT < 105 s identifies patients who did not receive a transfusion
Prospective, 9/2009-2/2011

N=1974

Regression analysis controlling for age, gender, mechanism w-RTS, ISS, and base deficit
Can TEG replace CCTs?

• ACT predicted patients with substantial bleeding and RBC transfusion better than PT/PTT or INR ($p = 0.03$)

• α-angle was superior to fibrinogen for predicting plasma transfusion ($p < 0.001$)

• mA was superior to platelet count for predicting platelet transfusion ($p < 0.001$)
Can TEG replace CCTs?

• These correlations improved for transfused, shocked or head injured patients

• The charge for r-TEG ($317) was similar to the five CCTs (>400)

• Admission conventional coagulation tests can be replaced with r-TEG
Prospective data collection
> 6 units PRBC within 6 hours of admission
Introduction of a rTEG transfusion algorithm
Pre-rTEG (N=34) and post-rTEG(N=34)

Trend towards fewer products in the post-rTEG
Improved FFP:PRBC in the post-rTEG
Improved mortality 65% to 29%
 – Small N, ISS differences
Trauma - Summary

• TEG/ROTEM probably the best modality to characterize acute traumatic coagulopathy
 – (my opinion I’m biased)

• Massive transfusion protocols
• Goal directed hemostatic resuscitation

• Adults and children(?)
• Outcome data
Extracorporeal Life Support (aka ECMO)
Systemic Anticoagulation

It’s Important

Anticoagulation Monitoring

- Accurate
- Precise
- Rapid results

- Delicate “Balance” between hypo and hyper coagulability
 - In REALLY sick patients!
Tests, tests, and more tests

- **Laboratory based**
 - PT, INR, aPTT
 - Anti-factor Xa
 - Thrombin time
 - Fibrinogen
 - Platelet count
 - AT III
 - Factor assays
 - TEG
 - ROTEM
 - Others

- **Point of Care**
 - ACT
 - aPTT
 - TEG
 - ROTEM
Systemic Anticoagulation

ECLS Coagulation Monitoring in US

139 responses from 97 institutions
Let's talk about coagulation tests (again . . . a surgeons perspective)
ACT

• Whole blood
• Primary use to titrate heparin in extracorporeal applications
 – Cardiac bypass

• Advantages
 – POC, rapid, available, “cheap”
 – We’ve using it forever . . .

• Disadvantages
 – Lack of standardization (devices, etc.)
 • Optical vs. mechanical
 – Impacted by other variables
ACT

The bigger issue. . .

ACT’s don’t really correlate to heparin dose !!
ACT

What about aPTT?

Anti-Factor Xa

Viscoelastic Monitoring

- Whole blood
- Coagulation (and fibrinolysis)
- Platelet Function
- Laboratory vs. POC
- Underlying hemostatic function
 - Heparinase
Summary
Common Themes in Trauma and ECLS

• Critically ill patients

• Dynamic clinical situation

• Importance of coagulopathy

• Need for monitoring
Guiding Principles

• “same thing, the same way, every time”
 – Every institution is unique
 – NO COMMON LANGUAGE

• Treat the patient NOT a number
 – A test is just a test . . .
 – Understand what you’re looking at
 – Take a step back and interpret all of the clinical data
Guiding Principles

• Clinical Outcomes

• I have no idea what the “right” answer is . . .
 – Any help would be greatly appreciated!

• Future clinical research
Self-Assessment Question

• The best coagulation test for monitoring and managing systemic anticoagulation on ECLS is:
 – ACT
 – INR
 – aPTT
 – TEG
 – Anti-factor Xa
 – Yes