Disclosures

Consultant for CVS Caremark, Harvard Clinical Research Institute

Grant support from NIDDK, Satellite Healthcare, Genzyme, Otsuka, Merck, Pfizer

Expert defense witness for litigation related to GE product Omniscan; data monitoring committee for Takeda trial on febuxostat

Biomarkers in AKI Clinical Trials: Are They Ready or Not?

Sushrut S. Waikar, MD, MPH
Director of Renal Ambulatory Services, Brigham and Women’s Hospital
Assistant Professor of Medicine, Harvard Medical School

November 6, 2013

My Un-enviable Task

*I found the old format much more exciting.*
My Un-enviable Task

• In an international meeting jointly sponsored by ASN and AACC on AKI biomarkers...

• On a topic upon which my professional efforts are focused...

• To argue that AKI biomarkers are not ready for use

Premise

• Current novel biomarkers of AKI are not ready for use in clinical trials

• For the purposes of this debate, I will use a narrow definition of “biomarker”
  • Examples: NGAL, KIM-1, L-FABP, others
  • Not serum creatinine, urine output, other conventional labs

Roles of AKI biomarkers

• Using biomarkers for clinical trial “enrichment”
  • Aid trial design by enrolling or treating patients according to biomarker

• Surrogate endpoints
  • Rather than “hard endpoint” (death; dialysis; doubling of serum creatinine), utilize novel biomarkers of tubular injury

• Pre-clinical or early phase toxicology screening
  • Identify safe versus dangerous compounds in early phase studies
Roles of AKI biomarkers

• Using biomarkers for clinical trial “enrichment”
  • Aid trial design by enrolling or treating patients according to biomarker

• Surrogate endpoints
  • Rather than “hard endpoint” (death; dialysis; doubling of serum creatinine), novel biomarker

• Pre-clinical or early phase studies
  • Identify safe versus dangerous compounds in early phase studies

Studies under way (F-NIH Kidney Safety Project; IMI-SAFE T)

Case study

Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYRF trial)

• Double-blind, placebo-controlled trial on early treatment with erythropoietin 500 U/kg IV for prevention of AKI
• Consecutive ICU patients or high risk cardiac surgery patients
• Intervention and triage trial
  • Urine obtained for GGT, AP, and creatinine
  • If biomarker > 46.3 → enroll in RCT [N = 162]
  • If biomarker ≤ 46.3 → not a candidate for RCT, but observe
528 ICU admissions

94 developed acute kidney injury

How can a biomarker make this trial more efficient?

Apply biomarker test (urine GGT * alk phos < 43): 293 patients without AKI would not have to be enrolled
Apply biomarker test (urine GGT * alk phos < 43):
293 patients without AKI would not have to be enrolled
Lose 52 patients who would have developed AKI

With biomarker-driven inclusion strategy, EARLY ARF was able to enrich cohort from 17.8% AKI incidence to 23.0%.
More efficient, less costly.
A “better” biomarker would have been even more efficient

528 ICU admissions
94 developed acute kidney injury

Biomarker enrichment designs
By applying biomarker cutoff for entry, interventional trials can target higher risk patients: gains in efficiency

Performance of the enrichment design depends on sensitivity, specificity, and prevalence of AKI

# biomarker + = true positive + false positive
# biomarker - = true negative + false negative

# biomarker + = sens*prev + (1-spec)*(1-prev)
# biomarker - = [spec * (1-prev)]+prev * (1-sens)
Biomarker enrichment designs

By applying biomarker cutoff for entry, interventional trials can target higher risk patients: gains in efficiency

Performance of the enrichment design depends on sensitivity, specificity, and prevalence of AKI

\[ \# \text{biomarker}^+ = \text{true positive} + \text{false positive} \]
\[ \# \text{biomarker}^- = \text{true negative} + \text{false negative} \]

Example

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

**WITHOUT BIOMARKER**

- No need to screen
- Enroll 1000 patients, randomize all
- Have enrolled 800 who are not informative

**WITH BIOMARKER**

- Screen more than 1000
- Randomize fewer than 1000 patients
- Fewer disease-negative patients enrolled
**Example**

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

**WITHOUT BIOMARKER**
- No need to screen
- Enroll 1000 patients, randomize all
- Have enrolled 800 who are not informative

**WITH BIOMARKER**
- Screen 2,238
- Randomize 762

---

**Example**

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

**WITHOUT BIOMARKER**
- No need to screen
- Enroll 1000 patients, randomize all
- Have enrolled 800 who are not informative

**WITH BIOMARKER**
- Screen 1,250
- Randomize 400

---

**Example**

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

**WITHOUT BIOMARKER**
- No need to screen
- Enroll 1000 patients, randomize all
- Have enrolled 800 who are not informative

**WITH BIOMARKER**
- Screen 1,111
- Randomize 269
Argument up until now...

- Biomarker enrichment strategy can optimize clinical trial design
- Based on sensitivity, specificity and incidence, one can estimate gains in efficiency
- Potential downsides:
  - Cost
  - Turnaround time
  - Generalizability limited to biomarker

However...

- Do currently available "novel" biomarkers outperform clinical risk prediction models?
- Are sensitivity and specificity of NGAL, KIM-1, L-FABP, or other biomarkers superior to carefully constructed clinical risk prediction models?

Clinical models

<table>
<thead>
<tr>
<th>Description</th>
<th>Area under the ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Clinical Score to Predict Acute Renal Failure after Cardiac Surgery</td>
<td>0.82</td>
</tr>
<tr>
<td>J Am Soc Nephrol 2005</td>
<td></td>
</tr>
<tr>
<td>Cheryl V. Thurer, MD, Susan Artigas, RN, Sarah Wedley, Jean Pierre Yamd, MD and Ed F. Pagani, MD</td>
<td></td>
</tr>
<tr>
<td>A Risk Prediction Score for Kidney Failure or Mortality in Rhabdomyolysis</td>
<td>0.83</td>
</tr>
<tr>
<td>JAMA Int Med 2013</td>
<td></td>
</tr>
<tr>
<td>Grace Williams, MS, BS, Researcher, MB; Susan Veri, MB, MPH</td>
<td></td>
</tr>
<tr>
<td>Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in</td>
<td>0.80</td>
</tr>
<tr>
<td>critically ill children</td>
<td></td>
</tr>
<tr>
<td>Kidney Int 2013</td>
<td></td>
</tr>
<tr>
<td>Raj A. Aujla, MD; Michael Spragg, MD; Lee Batterman, MD; Tony Streatfield, MD; Lakhvir S. Dhillon, MD</td>
<td></td>
</tr>
</tbody>
</table>
Clinical models

<table>
<thead>
<tr>
<th>Area under the ROC</th>
<th>Biomarkers under the ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGAL: 0.60 – 0.85</td>
<td>TIMP-2: 0.80</td>
</tr>
</tbody>
</table>

“Conventional” biomarkers

  "At 24 h postop, the performance of fluid balance was comparable to that of preop conventional and postop 24h novel biomarkers"

- NCT01602328, A Study to Evaluate AC607 for AKI in cardiac surgery (ACT-AKI). (Allocure, Inc. study of mesenchymal stem cells for AKI treatment/prevention)
  "Inclusion criteria: 0.5 mg/dL rise in SCr within 48 of bypass"

- DiSomma et al. Additive value of NGAL to clinical judgment in AKI diagnosis in the ED. Critical Care 2013
  AUC of NGAL for AKI diagnosis at time 0: 0.799
  AUC of clinical judgment at time 0: 0.837

- Parikh et al. TRIBE-AKI, J Am Soc Nephrol 2011
  AUC of clinical model 0.69  Adding IL-18, increases to 0.76
  (Note however that clinical model excludes postop SCr, urine output)
**Biomarker + clinical model?**

- Why not incorporate biomarker enrichment design on top of carefully constructed clinical prediction model?

\[
\text{High clinical risk score} \quad \rightarrow \quad + \text{biomarker} \rightarrow \text{randomize}
\]
\[
- \text{biomarker} \rightarrow \text{exclude}
\]

- Change in C-statistic, integrated discrimination index, net risk reclassification
- Metrics that capture improvement in risk prediction

**Biomarker + clinical model?**

- Improving upon good clinical risk prediction models with novel biomarkers is difficult
- Framingham risk score + 10 biomarkers of multiple biologic pathways (CRP; bNP; aldosterone; urine ACR; others)
- Change in C-statistic can be minimal: 0.80 to 0.82

**Example**

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

<table>
<thead>
<tr>
<th>WITHOUT BIOMARKER</th>
<th>WITH BIOMARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>No need to screen</td>
<td>Screen more than 1000</td>
</tr>
<tr>
<td>Enroll 1000 patients, randomize all</td>
<td>Randomize fewer than 1000 patients</td>
</tr>
<tr>
<td>Have enrolled 800 who are not informative</td>
<td>Fewer disease-negative patients enrolled</td>
</tr>
</tbody>
</table>
Example

- Prevention trial in cardiac surgery – AKI
- Sample size estimate of # AKI = 200
- Assume incidence = 20%, N = 1000

Conclusions

- AKI biomarkers studied to date are not superior to good clinical risk prediction models
- Any gain in C-statistic, net risk reclassification may be statistically significantly, but clinically trivial
- Downsides to biomarker-enrichment designs need to be carefully considered
  - Additional expense of screening, testing
  - Turnaround time for test result
  - Threat to generalizability

Thank You!