Congestive Heart Failure & Cardiorenal Syndrome: Is there Role for Biomarkers?

W. H. Wilson Tang, MD FACC FAHA
Professor of Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University
Research Director, Section of Heart Failure and Cardiac Transplantation Medicine, Heart and Vascular Institute
Medical Director, Center for Cardiovascular Diagnostics and Prevention, Department of Cellular and Molecular Medicine, Lerner Research Institute

Atlanta GA November 5, 2013
AACC/ASN Arnold O. Beckman Conference

Cleveland Clinic
Congestive Heart Failure and Cardio-Renal Syndrome: *Role of Biomarkers*

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
Renal Impairment in Acute HF: ADHERE

When admitted for Acute HF:
- 1 out of 5 has rise in creatinine
- 1 out of 10 goes to dialysis
- 1 out of 20 stays on dialysis
- 1 out of 5 dies if BUN >43 mg/dL and SBP <115 mmHg (10% pts)
- 1 out of 5 dies if BUN >43 mg/dL, SBP ≥115 mg Hg, but Cr >2.75 mg/dL (2% pts)

Prevalence of CKD by eGFR (in ml/min/1.73m²)

- 27% ≥90
- 13% 60-89
- 7% 15-29
- 9% <15
- 15% 30-59

65% of ADHF patients presented with eGFR<60 ml/min/1.73m²
Heywood et al, J Card Fail 2007

Fonarow et al, J Card Fail 2003; Fonarow et. al. JAMA 2004
“Worsening Renal Function”

- Serum creatinine ≥ 0.3 mg/dL:
- In-hospital mortality:
 - Sensitivity of 65%
 - Specificity of 81%
- 2.3 days \uparrow length of stay
- 67% \uparrow risk of death within 6 months after discharge
- 33% \uparrow risk for readmission
- **Risk factors:**
 - Co-morbidities (diabetes)
 - Age
 - CKD (admit Cr >2.5 mg/dL)
 - Nephrotoxic drugs

2021 patients in placebo arm of EVEREST trial
53.2% had GFR ≤60 ml/min/1.73m²
13.8% had worsening renal function (WRF) in-hospital
11.9% had WRF post-discharge – more prognostic

Blair et al, *Eur Heart J* 2011
By discharge, 12% of patients had a $\geq 25\%$ decrease in eGFR, and 39% had a $\geq 25\%$ increase in BUN

Klein et. al. *Circ Heart Fail* 2008
Congestive Heart Failure and Cardio-Renal Syndrome: Role of Biomarkers

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
- Contemporary descriptive CRS nomenclature *not* based on pathophysiology
“Cardio-Renal Syndrome” (CRS)

NHLBI Working Group Definition (2004): “The extreme of cardio-renal dysregulation whereby therapy to relieve congestive symptoms of heart failure is limited by further decline in renal function”

ADQI Classification (2009): Disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other.

Determinants for CRS:
- Cardio-renal perfusion
- Renal sodium/water handling
- Mobilization of excess fluid

ADQI Guidelines, Ronco et al, *Eur Heart J* 2009
Complex Interplay in Cardio-Renal Syndrome

Tang & Mullens, *Heart* 2010
Venous Congestion and Renal Function in AHFS

Mullens et al, JACC 2008
Predictors of Improving Renal Function

Predictors:
- ↓ BP / ↓ hypertension
- ↑ Hepatojugular reflux / JVD
- ↓ LVEF / ↑ RV dysfunction
- ↓ eGFR / ↑ BUN
- ↑ β-blocker / spironolactone
- No invasive hemodynamic predictors

Testani et al, AJC 2010; Testani et al, JCF 2011
Decreases in Mean Arterial Pressure rather than Changes in Central Hemodynamics Portend CRS

Dupont et al, Eur J Heart Fail 2013
Benefit of Decongestion & Hemoconcentration Despite Worsening Renal Function

Testani et al, *Circulation* 2010

Testani et al, *J Am Coll Cardiol* 2013
Abdominal Contribution to Cardio-Renal Dysfunction

Verbrugge et al, JACC 2013; Fallick et al, CircHF 2011
Relief of Intra-Abdominal Pressure in CRS

Subgroup presenting with elevated IAP at baseline

![Graph showing changes in INtra-abdominal pressure and serum creatinine](image)

- ↑ sCr
- ↓ sCr

Clinically-Available Biomarkers for Heart Failure

- BNP / NT-proBNP
- Cardiac troponin I or T
- hsCRP
- Soluble ST2
- Myeloperoxidase
- Uric acid
- Renin
- Aldosterone
- Norepinephrine
- Creatinine
- BUN
- Cystatin C
- Sodium (NGAL)
- Galectin-3
- Others:
 - Blood/urine electrolytes
 - Liver function tests
 - Thyroid function tests
 - Complete blood count
 - Iron studies

Congestive Heart Failure and Cardio-Renal Syndrome: Role of Biomarkers

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
- Contemporary descriptive CRS nomenclature \textit{not} based on pathophysiology
- Novel biomarkers are derived from acute kidney injury models that may or may not align with cardio-renal pathophysiology
Baseline and Serial Cystatin C in ADHF: ASCEND-HF

Tang et al, AHA 2011 (abstract)
Lack of Concordance between WRF Defined by Rise in Creatinine versus Rise in Cystatin C

Dupont et al, *Congest Heart Fail* 2013
Increased Interstitial Fibrosis & Inflammation in CRS

Neutrophil gelatinase-associated lipocalin (NGAL)

Cleveland Clinic

GALLIANT

Aghel et al, J Card Fail 2009
Maisel et al, Eur J Heart Fail 2011
Urinary rather than Serum NGAL associated with Diuresis and Natriuresis in Heart Failure

Shrestha et al, *Am J Cardiol* 2012

Schmidt-Ott, *Nephrol Dial Transplant* 2011
NGAL in ADHF: Injury or Insufficiency?

Dupont et al, *Eur J Heart Fail* 2012
Distinct Patterns of AKI Biomarkers in ADHF

Park et al, *Biomarker Insights* 2012
Limited Predictive Value of Novel Urinary AKI Markers in AKI or Persistent Renal Impairment in ADHF

Verbrugge et al, J Card Fail 2013
Current Renal Biomarkers are Non-Specific to Pathogenic Mechanisms or Renal Changes

Mechanisms
- Hemodynamic derangements
- Neurohormonal perturbations
- Oxidative stress and inflammation

Renal Changes
- ↓ Filtration pressure
- Renal injury
- Loss of nephron mass

Biomarkers
- ↑ BUN / creatinine
- ↑ Cystatin C
- ↑ CNP
- AKI Markers (NGAL, KIM1, IL18)
Congestive Heart Failure and Cardio-Renal Syndrome: *Role of Biomarkers*

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
- Contemporary descriptive CRS nomenclature *not* based on pathophysiology
- Novel biomarkers are derived from acute kidney injury models that may or may not align with cardio-renal pathophysiology
- Acute biomarker changes may not reliably identify target populations or adverse endpoints
DOSE-HF: Diuretic-induced WRF and Clinical Outcomes

Felker et al, *NEJM* 2011
Changes in Renal Function: DOSE-AHF

Felker et al, *NEJM* 2011; House *CJASN* 2013
Ultrafiltration in CRS: CARRESS-HF

ADHF pts with $\uparrow\text{Cr} > 0.3 \text{ mg/dL}$

Death or HF Rehospitalization

HR = 1.01 (0.62, 1.64)
$P = 0.9556$

Serum Creatinine

Bart et al, *NEJM* 2012
Weight Loss at 72h in kg
(1° Endpoint)

↑Cr >0.3 mg/dL towards compensation (%)

DUEL vs DOSE:

↓Weight & ↑Creatinine

4/316 (1.4%) in TOR rehospitalized in 60 days
4.2% in TOR required switch to IV

Mareev et al, ESC HF 2011 LBCT
Congestive Heart Failure and Cardio-Renal Syndrome: *Role of Biomarkers*

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
- Contemporary descriptive CRS nomenclature *not* based on pathophysiology
- Novel biomarkers are derived from acute kidney injury models that may or may not align with cardio-renal pathophysiology
- Acute biomarker changes may not reliably identify target populations or adverse endpoints
- Renal biomarkers may provide insights into vulnerable populations for renal-enhancing therapies, but need distinction of therapeutic mechanisms.
Renal Preservation with Serelaxin in ADHF

Metra et al, J Am Coll Cardiol 2013
Benefits for Serelaxin in ADHF: RELAX-AHF

Metra et al, *Eur Heart J* 2013
MEMs-based Pressure Sensor for Monitoring Pulmonary Artery Pressures

- Catheter-based delivery system
- Implanted PA branch diameter 7-15 mm
- Clopidogrel/aspirin combined for 1 month post-implant or previous warfarin
- Daily readings by external device

- Target range (mmHg):
 - PA systolic: 15-35
 - PA diastolic: 8-20
 - PA mean: 10-25
CHAMPION: Primary Results

- 550 NYHA III patients from 63 centers
- Hospitalized for HF ≤12 months
- Excluded eGFR <25 ml/min

Preliminary Findings:
- 30%↓ in HF hospitalizations at 6 months
- 35%↓ in annualized HF hospitalization rates for the entire randomized follow-up
- ↑QoL score with treatment group

Abraham et al, Lancet 2011
Distinct “Breathprint” for Acute HF

Samara et al, J Am Coll Cardiol 2013
Congestive Heart Failure and Cardio-Renal Syndrome: Role of Biomarkers

- Current concepts of CRS are largely based upon biomarker changes (creatinine) during intravascular volume shifts and
- Contemporary descriptive CRS nomenclature *not* based on pathophysiology
- Novel biomarkers are derived from acute kidney injury models that may or may not align with cardio-renal pathophysiology
- Acute biomarker changes may not reliably identify target populations or adverse endpoints
- Renal biomarkers may provide insights into vulnerable populations for renal-enhancing therapies, but need distinction of therapeutic mechanisms.