Biomarkers of CKD progression and mortality in HIV

Michael G. Shlipak, MD, MPH
Professor of Medicine, Epidemiology and Biostatistics, UCSF
Chief, General Internal Medicine, San Francisco VA Medical Center

November 5th, 2013
Why Study Kidney Disease in HIV?

- Early onset of kidney disease
- Chronic inflammatory state
- Viral suppression improves kidney function
- Racial differences in progression rates
- Potential benefits and harms from treatment
HIV Increases ESRD Risk

Danish Cohort Study (5,300 HIV+; 53,000 controls)

Any dialysis

HR = 4.7 (4.0-6.0)

Chronic dialysis

HR = 3.59 (2.0-6.0)

Kidney Disease Accelerated in HIV

FRAM, NHANES comparison of cystatin C

HIV+

HIV-

16-year acceleration in kidney decline
Risks of Kidney Disease Begin Early in HIV

WIHS Cohort (N=\sim 1,100)

10 year mortality risk

eGFRcys

![Graph showing 10 year mortality risk vs. baseline eGFRcys.](image)
Risks of Kidney Disease Begin Early in HIV

WIHS Cohort (N=\sim 1,100)

10 year mortality risk

![Graph showing baseline eGFRcr vs probability of mortality](image)
Determinants of Kidney Injury in HIV

Virus (HIV, HCV)

Antiretroviral medications

Age and Race

Traditional kidney risk factors (diabetes, hypertension)

Genetic Factors (AP0L1)
Risk Factors for ESRD in the VA

- N = 22,156 participants with active follow-up
- ESRD cases: N = 366
- Median follow-up: 69 months
- Mean Age: 45
- Male (98%)
- Race: White (36%), Black (42%), Other (22%)
- 7% eGFR < 60
- 31% proteinuria

Jotwani V et al. AJKD 2012
Risk Factors for End-Stage Renal Disease

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Multivariate Adjusted</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Risk Factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black race</td>
<td>3.06 (2.22-4.22)</td>
<td><0.001</td>
</tr>
<tr>
<td>Metabolic/Vascular Risk Factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.87 (1.46-2.40)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.69 (1.32-2.16)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiovascular Disease</td>
<td>2.17 (1.72-2.74)</td>
<td><0.001</td>
</tr>
<tr>
<td>HIV Risk Factors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4 Count <200</td>
<td>1.54 (1.17-2.02)</td>
<td>0.002</td>
</tr>
<tr>
<td>Viral Load ≥30,000</td>
<td>2.01 (1.46-2.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td>1.90 (1.52-2.38)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypoalbuminuria (<3.5)</td>
<td>2.14 (1.80-2.54)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Jotwani V et al. AJKD 2012
Tenofovir and Kidney Risk

Over half of current anti-retroviral regimens include tenofovir.

We conducted analysis of new users of anti-retrovirals

Timeframe: 1997-2007

Primary predictor: tenofovir

Outcomes:
- New onset proteinuria (1+ or higher)
- Rapid decline in kidney function (>3/year)
- New onset CKD (eGFR<60)

Scherzer R et al. AIDS 2012
Tenofovir Exposure and Risk of Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proteinuria (n = 3400 events)</td>
</tr>
<tr>
<td>Ever Exposure to Tenofovir (versus never)</td>
<td>1.68 (1.52-1.85)***</td>
</tr>
</tbody>
</table>

*** p<.0001, ** p<.001, * p<.01, + p<.05

Scherzer R et al. AIDS 2012
Potential Roles of Novel Biomarkers in HIV

- Early detection of kidney disease
- Specify cause of injury:
 - Metabolic
 - Viral/inflammatory
 - Drug toxicity
- Current methods (creatinine, dipstick proteinuria) only detect established disease and cannot distinguish etiology
WIHS COHORT: HIV⁺ AND HIV⁻ WOMEN

Women’s Interagency HIV Study

Investigations using novel urine biomarkers for kidney injury
Hypotheses

1. Tubule injury predicts GFR decline independent of albuminuria
2. HIV-infection causes chronic tubular injury
3. Tubule injury - 3rd axis of kidney disease and prognosis
4. Tubule dysfunction may be independent predictor of kidney function decline
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>HIV-Infected (N = 1,032)</th>
<th>HIV-Uninfected (N = 371)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>41 (36-45)</td>
<td>38 (32-44)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>610 (59%)</td>
<td>228 (61%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Caucasian</td>
<td>198 (19%)</td>
<td>53 (14%)</td>
<td></td>
</tr>
<tr>
<td>Current Smoker</td>
<td>542 (53%)</td>
<td>221 (60%)</td>
<td>0.063</td>
</tr>
<tr>
<td>Diabetes</td>
<td>102 (10%)</td>
<td>39 (11%)</td>
<td>0.76</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>315 (31%)</td>
<td>67 (18%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Current CD4</td>
<td>398 (247-581)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Shlipak MG et al. JAIDS, 2013
Urine Biomarkers Evaluated in WIHS

- ACR
- Interleukin-18
- KIM-1
- NGAL
- α-1 microglobulin
Biomarker Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>ACR</th>
<th>IL-18</th>
<th>KIM-1</th>
<th>NGAL</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-18</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIM-1</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGAL</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>α-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

- Red: 0.1-0.2
- Blue: 0.2-0.3
- Green: >0.3

All biomarkers standardized to urine creatinine
Urine Biomarker and Kidney Decline in HIV+

- **Single Injury Marker: Multivariate-Adjusted**
 - ACR
 - IL-18
 - KIM-1
 - NGAL

- **Additional Adjustment for Other Injury Biomarkers**
 - ACR
 - IL-18
 - KIM-1
 - NGAL

Adjusted Effect on Δ eGFR

Shlipak MG et al. JAIDS, 2013
Urine Biomarkers and Kidney Decline in HIV-

Single Injury Marker: Multivariate-Adjusted

- ACR
- IL-18
- KIM-1
- NGAL

Additional Adjustment for Other Injury Biomarkers

- ACR
- IL-18
- KIM-1
- NGAL

Adjusted Effect on Δ eGFR

Shlipak MG et al. JAIDS, 2013
<table>
<thead>
<tr>
<th>Cutoff Points</th>
<th>ACR >15.7 mg/g</th>
<th>IL-18 >196 pg/mL</th>
<th>KIM-1 >721 pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (N=381)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2**</td>
<td>1.32 (0.91 to 1.91)</td>
<td>1.74 (1.25 to 2.43)**</td>
<td>1.10 (0.77 to 1.57)</td>
</tr>
<tr>
<td>10% (N=138)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2**</td>
<td>1.50 (0.74 to 3.03)</td>
<td>2.46 (1.32 to 4.57)+</td>
<td>2.05 (1.17 to 3.58)#</td>
</tr>
</tbody>
</table>

*N= number of participants with at least one outcome

**Model 2: multivariate-adjusted full model controls for model 1 plus traditional risk factors, HIV-related risk factors, and ACR

+p<0.01

++p<0.001

#p<0.05
High Tertile of ACR, IL-18, and KIM-1 and Rapid Kidney Decline in HIV-Uninfected (N=289)

<table>
<thead>
<tr>
<th>Cutoff Points</th>
<th>ACR >15.7 mg/g</th>
<th>IL-18 >196 pg/mL</th>
<th>KIM-1 >721 pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (N=67)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2**</td>
<td>0.92 (0.56 to 1.53)</td>
<td>1.76 (0.90 to 3.44)</td>
<td>1.40 (0.79 to 2.49)</td>
</tr>
<tr>
<td>10% (N=21)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2**</td>
<td>1.28 (0.46 to 3.55)</td>
<td>5.93 (1.34 to 26.13)#</td>
<td>4.25 (1.06 to 17.09)#</td>
</tr>
</tbody>
</table>

* N= number of participants with at least one outcome
** Model 2: multivariate-adjusted full model controls for model 1 plus traditional risk factors, HIV-related risk factors, and ACR
+p<0.01
++p<0.001
#p<0.05
Urine Biomarker Levels: HIV vs. Controls

Adjusted Differences:

1. IL-18 (pg/mL): ↑ 38%
2. NGAL (ng/mL): ↑ 17%
3. KIM-1 (pg/mL): ↑ 12%
4. ACR (mg/g): ↑ 47%

Jotwani V. et al. In Press, AVT
Independent Predictors of Each Biomarker

<table>
<thead>
<tr>
<th>Demographic Risk Factors:</th>
<th>ACR % Estimate (95% CI)</th>
<th>IL-18 % Estimate (95% CI)</th>
<th>KIM-1 % Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Race</td>
<td>↑ 35 (5, 72)</td>
<td>↑ 59 (34, 88)</td>
<td>↓ 5(-22, 16)</td>
</tr>
<tr>
<td>Metabolic/Vascular Risk Factors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>↑ 81 (38, 136)</td>
<td>-</td>
<td>↑ 31(12, 54)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>↑ 47 (7, 101)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HIV Risk Factors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4 Count</td>
<td>-</td>
<td>↓ 8(-13,-3)</td>
<td>↓ 8 (-13,-2)</td>
</tr>
<tr>
<td>Viral Load</td>
<td>↑ 15 (7, 25)</td>
<td>↑ 15 (8, 22)</td>
<td>-</td>
</tr>
<tr>
<td>HCV Infection</td>
<td>-</td>
<td>↑ 30 (13, 49)</td>
<td>↑ 20(3, 40)</td>
</tr>
</tbody>
</table>

*all p-values< 0.01

Jotwani V. et al. In Press, AVT.
Kidney Biomarkers and Mortality Risk

Shlipak MG et al. JAIDS, 2013.
Adjusted HR: Biomarker Tertiles and Mortality Risk

- IL-18:
 - Tertile 1
 - Tertile 2
 - Tertile 3

- ACR:
 - Tertile 1
 - Tertile 2
 - Tertile 3

- L-FABP:
 - Tertile 1
 - Tertile 2
 - Tertile 3

Note: Fully-adjusted Cox models control for age, ethnicity, traditional kidney risk factors, and HIV-related risk factors (all measured at baseline, except for CD4 and HIVRNA, which are time-updated). Traditional kidney risk factors include smoking, hypertension, diabetes, ACR, and eGFRcystatin. HIV-related risk factors include CD4 count, HIVRNA, and HCV.

Peralta CA. et al. In Press, HIV Medicine
of Abnormal Biomarkers- Mortality Risk

![Graph showing annual death rate with different number of elevated biomarkers](image)

- **0 elevated (n=136)**: 15 cases, annual death rate (95% CI) with p-value 0.26.
- **1 elevated (n=295)**: 47 cases, annual death rate (95% CI) with p-value 0.012.
- **2 elevated (n=269)**: 64 cases, annual death rate (95% CI) with p-value <0.0001.
- **3+ elevated (n=208)**: 75 cases, annual death rate (95% CI).

Number of the five biomarkers in the “worst” tertile (IL-18, NGAL, KIM-1, ACR, L-FABP)

Note: P-values denote comparison with 0 elevated category. Rates above are age-adjusted.

Peralta CA. et al. In Press, HIV Medicine
α-1 microglobulin

- Urine marker of proximal tubule dysfunction
- Freely filtered
- Completely metabolized in proximal tubule
- Should not be detectable in urine
Detectable α-1 microglobulin in HIV+ vs. HIV- Controls

Detectable >0.6 mg/dL

Adjusted HR: 1.46 (1.2-1.8); p=0.0004

Jotwani V. et al. In Press, AVT.
Association of urinary α-1 microglobulin and other urine biomarkers with kidney decline among HIV-infected participants

Jotwani V. et al. Manuscript in Progress.
Optimal HIV Biomarker Panel?

- Glomerular Injury – ACR
- Proximal Tubule Injury – KIM-1, IL-18
- Proximal Tubule Dysfunction – α-1 microglobulin
New Users of HAART in WIHS Cohort

Oboho et al. JAIDS, 2013

TDF (n=45) vs. No TDF (n=45)

1. NGAL - no difference
2. NAG - small increase in TDF users
3. B$_2$mg - Huge increase in TDF users
 “19-fold OR of abnormal B$_2$mg”

Suggest proximal tubule dysfunction may be early sign of TDF toxicity that is otherwise not detectable
TDF/FTC (n=193) vs. ABC/3TC (n=192) Randomized Control Trial

- 48 week follow-up
- No change in eGFR
- Relative change in TDF/FTC vs. ABC/3TC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>↑ 8%</td>
<td>p=0.42</td>
</tr>
<tr>
<td>NAG</td>
<td>↑ 5%</td>
<td>p=0.51</td>
</tr>
<tr>
<td>B₂M</td>
<td>↑ 133%</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>RBP</td>
<td>↑ 50%</td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>

Post et al. JAIDS, 2010
Clinical definition of “Proximal Tubule Dysfunction”

2 of 3

- Urine glucose > 250 (non-diabetic)
- Serum K < 3mEq/L
- Serum HCO$_3^-$ <19mEq/L

- No cases occurred during follow-up

Post et al. JAIDS, 2010
Markers of injury and dysfunction in the kidney tubules:
- Are elevated in HIV+ persons compared with HIV- persons
- Different biomarkers capture a different risk factor profile
- Are independently associated with declining kidney function over time, complementary with albuminuria
- Appear to be independently associated with mortality risk
- May help in early detection of drug toxicity

Although new and not widely available clinically, these biomarkers could have utility in the management of HIV treatment.
Acknowledgements

Funding Sources:

- National Institute on Aging
 - R01AG034853 (HIV population)
 - 5R03AG034871
Thank You!