Making Sense of Numbers and Ratios

The Laboratory’s Role in Pain Management Result Interpretation

Frederick G. Strathmann, PhD, DABCC (CC, TC)

AACC Mass Spectrometry in the Clinical Laboratory

September 17, 2013
Contact Information

Frederick G. Strathmann, PhD, DABCC (CC, TC)

Medical Director, Toxicology
ARUP Laboratories

Assistant Professor
Department of Pathology
Associate Member
Interdepartmental Graduate Program in Neuroscience
University of Utah

frederick.g.strathmann@aruplab.com
Speaker Financial Disclosure Information

- Grant/Research Support: None
- Salary/Consultant Fees: None
- Board/Committee/Advisory Board Membership: None
- Stocks/Bonds: None
- Honorarium/Expenses: None
- Intellectual Property/Royalty Income: None
Acknowledgements

Past
• University of Washington
 – Andy Hoofnagle
 – Tom Laha
 – Jess Becker

Present
• ARUP Laboratories
• ARUP Institute for Clinical and Experimental Pathology
• University of Utah
 – Department of Pathology
Objectives

• Explain the differences between quantitative and qualitative testing

• Differentiate between compound identification, quantitation and confirmation

• Compare the screen with reflex approach with targeted screening for pain management testing

• Judge the utility of urine drug testing for compliance in the pain management setting
The Clinical Goal for Testing

Pain Management Context

- Minimizing risk to maximize patient benefit
 - Monitoring Compliance
 - Detecting illicit use

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Recommended Frequency of Testing (per year) - UDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Moderate</td>
<td>≥ 2</td>
</tr>
<tr>
<td>High</td>
<td>≥ 3 or 4</td>
</tr>
<tr>
<td>Aberrant Behavior</td>
<td>At visit</td>
</tr>
</tbody>
</table>
The Laboratory’s Goal for Testing

Pain Management Context

• High quality testing
 – AMRs; Cross-reactivity (IA); TAT; QC; cutoffs; etc.
• Well-designed testing menu
 – Metabolites; Free vs. Conjugated vs. Total
• Easy to interpret reports
 – Data overload; Physicians are not pharmacologists
• Development of a test that actually gets ordered
 – Welcome to clinical mass spectrometry!
Outline

• Quantitative and qualitative testing

• Compound identification, quantitation and confirmation

• Screen with reflex versus targeted

• Urine drug testing for compliance in the pain management setting
Positivity Rates: Clinical vs. Workplace Testing

Clinical Testing
• Nov – Dec 2011
• 77% positivity rate
• < 5% false positives

Workplace Testing
• Typical estimates
 – < 5% positivity rate
Screen w/ Reflex:
Pain Management Reality

Sample Collected

Screen w/ reflex ordered

Positive
Mass Spec confirmation
Positive
Report out Concentration
Negative
Report out Negative

Negative
Stop
Report out Negative
Traditional Screening Assay Design

SAMHSA Cutoffs
- Marijuana – 50 ng/mL
- Cocaine – 150 ng/mL
- Opiates – 2000 ng/mL
- 6-AM – 10 ng/mL
- PCP – 25 ng/mL
- AMP/MAMP – 500 ng/mL
- MDMA – 500 ng/mL

Factors not considered
- Appropriate cutoffs
- Drugs of interest
- TAT
- Quantitative vs. Qualitative results
- Population
Negative Screen Result:

Poor Population Resolution

High Risk Patient

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OXYCODONE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENEN</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>

Pain Management Patient

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OXYCODONE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENEN</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>
Negative Screen Result:

Poor Population Resolution

High Risk Patient

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OXYCODONE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>

Pain Management Patient

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OXYCODONE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>
Positive Screen Result: Poor Analyte Resolution

- **Rx:**
 - Hydrocodone
 - Oxycodone

- **Interpretations**
 - Compliant?
 - Diversion?
 - Heroin?

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES H</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>OXYCODONE H</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>
Positive Screen Result: Poor Analyte Resolution

- **Rx:**
 - Hydrocodone
 - Oxycodone
- **Interpretations**
 - Compliant?
 - Diversion?
 - Heroin?

<table>
<thead>
<tr>
<th>Substance</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHETAMINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BARBITURATES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>BENZODIAZEPINES</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>COCAINE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>OPIATES (H)</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>OXYCODONE (H)</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>PCP</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>PROPOXYPHENE</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>THC</td>
<td>NEGATIVE</td>
</tr>
</tbody>
</table>
Screen with Reflex Summary

- One-size-fits-all solution that doesn’t fit
- Delayed TAT
- Initial screen result that is often useless
- Unnecessary confirmation testing
Outline

• Quantitative and qualitative testing

• Compound identification, quantitation and confirmation

• Screen with reflex versus targeted

• Urine drug testing for compliance in the pain management setting
Confirmation Testing

Yes, no, maybe?

- True confirmation testing means that the identity of a drug has been determined by two different methods
 - e.g., an immunoassay “screen” and then a mass spectrometry “confirm”
- For routine clinical testing, absolute identification is needed – *but not usually by two different methods!*
Confirmation Testing

When?

- Non-specific screening method used
 - e.g., immunoassay for opiates

Interpretation:
- Morphine only?
- 6-AM?
- All of them?
- None of them?

“You need this reflexed to confirmation.”
A Sensitive, Qualitative (Targeted) Screen by LC-TOF/MS

- Broad range of compounds
- Adequate sensitivity
 - on par with current confirmatory methods
- Parent drug and metabolites to aid interpretation
- TAT less than classic screen w/ reflex
- One and done (no need for confirmation)
Confirmation Testing

With LC-TOF this is not required!!

• Drugs are individually identified
 – Absolute identification with the *first* test

Interpretation:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine</td>
<td>NOT FOUND</td>
</tr>
<tr>
<td>6-AM</td>
<td>NOT FOUND</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>PRESENT</td>
</tr>
<tr>
<td>Codeine</td>
<td>NOT FOUND</td>
</tr>
</tbody>
</table>

“Positive for hydrocodone. No need for further testing.”
Benefits of an LC-TOF/MS Targeted Screen

- Sensitivity & Specificity on par with classic confirmatory methods
- Individual compound identification
- Elimination of cross-reactivity complications
- Drug/metabolite pairs for interpretations
- Drug abuse testing conducted concurrently for high risk populations
- Relatively easy integration of new targets
- “Reflex to Quantitation” still possible when needed
Outline

• Quantitative and qualitative testing

• Compound identification, quantitation and confirmation

• Screen with reflex versus targeted

• Urine drug testing for compliance in the pain management setting
Quantitative vs. Qualitative

When? Why?

• Will the amount of drug detected in the urine change management?
 – Remember to take urine concentration into account!
 – Quantitative value adds little when testing for compliance

Prescriptions:
Klonopin
Lortab

LC-TOF (Qualitative):
Clonazepam
7-aminoclonazepam
Hydrocodone

LC-MS/MS (Quantitative):
Clonazepam 64 ng/mL
7-aminoclonazepam 820 ng/mL
Hydrocodone 120 ng/mL

Q: Would the interpretation differ if clonazepam was 35 ng/mL?
A: Not likely.

Q: What if hydrocodone was 250 ng/mL?
A: Both values indicate compliance.
Quantitative vs. Qualitative

• Quantitation can help – sometimes
 – long $t_{1/2}$ for marijuana metabolites in a patient claiming to have abstained but still positive
 • Result 1 = 826 ng/mL (creatinine of 86 mg/dL)
 • Result 2 = 278 ng/mL (creatinine of 92 mg/dL)
 • Trend is downward = good!

• **Quantitation is still available when needed**

Q: Can’t I extrapolate back from a urine concentration and predict compliance with dose?
A: Unfortunately this has not proven to be reliable with routine testing in large and diverse populations.
Benefits of a Qualitative Assay

- Simpler testing strategy for multi-analyte tests
 - 67 drugs with 67 calibration curves??
- Reduced costs
- Addition of new analytes can be rapid
Limitations of a Qualitative Assay

- Quantitative results can be useful
- Accurate ratios are lost
 - Methamp/amp
 - Pharmaceutical tolerances for impurities
- Makes many physicians nervous
- Platform can cause reimbursement challenges
Quant vs. Qual Summary

- Absolute identification is required and can be done qualitatively
- Quantitation can be useful in select scenarios
- Quantitation in urine will not allow for partial vs. full compliance in the general population
Outline

• Quantitative and qualitative testing

• Compound identification, quantitation and confirmation

• Screen with reflex versus targeted

• Urine drug testing for compliance in the pain management setting
Interpreting Results

Easier said than done…

Dry Lab Challenge

Case Summary and Interpretation

A 41-year-old male with chronic low back pain came for a follow-up visit. The patient has a known right L5-S1 disc extrusion osteophyte complex and is being prescribed *Roxicet* (oxycodone + acetaminophen) and *Percocet* (oxycodone + acetaminophen).

Medication List

- LYRICA 150 mg p.o. b.i.d
- ROXICET/PERCOCET 5 per day p.r.n. pain
- VIAGRA p.r.n.

Test Results

<table>
<thead>
<tr>
<th>Screen Results</th>
<th>Confirmation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opiate screen NEGATIVE</td>
<td>Oxycode 2500 ng/mL, oxydormone 1500 ng/mL</td>
</tr>
<tr>
<td>Amphetamine screen POSITIVE</td>
<td>Amphetamine 2500 ng/mL</td>
</tr>
<tr>
<td>Benzo screen NEGATIVE</td>
<td>Lorazepam 4000 ng/mL</td>
</tr>
</tbody>
</table>

Interpretation (Educational)

<table>
<thead>
<tr>
<th>Result</th>
<th>No. of Respondents</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicology results are inconsistent with prescribed medication</td>
<td>49</td>
<td>59.8</td>
</tr>
<tr>
<td>Toxicology results are consistent with prescribed medication</td>
<td>33</td>
<td>40.2</td>
</tr>
<tr>
<td>Additional prescription drugs present</td>
<td>74</td>
<td>90.2</td>
</tr>
<tr>
<td>Additional prescription drugs absent</td>
<td>8</td>
<td>9.8</td>
</tr>
<tr>
<td>Illicit drugs present</td>
<td>40</td>
<td>48.2</td>
</tr>
<tr>
<td>Illicit drugs absent</td>
<td>43</td>
<td>51.8</td>
</tr>
</tbody>
</table>
Physicians make mistakes too

Common calls

- “My patient is taking Klonopin but repeatedly screens negative for benzos.”
 - 7-aminoclonazepam vs. clonazepam
- “My patient is taking oxycodone but is negative for opioids. Is he diverting?”
 - Opiate IA vs. Oxycodone IA
- “My patient is taking Valium but is positive for 4 other drugs.”
 - Benzo metabolism
How can the lab help physicians?

• Open dialogue

• Tests designed to meet the needs of the population served

• Inclusion of metabolites and conjugates

• Enhanced reports – if you dare!
How can the lab help itself?

• Inclusion of metabolites
 – Enhances confidence in identification
 • Oxycodone
 • Oxycodone, oxymorphone, noroxycodone, noroxymorphone
 – Allow for higher LOQs

• Staff education
 – Instrumentation, metabolite patterns, interferences
 – Continued education
Key Points

- Rethink the screen with reflex paradigm
- Compound identification is key – quantitation is a separate aspect
- Qualitative results are often all that is needed
- Design testing with both physicians AND the staff in mind
Contact Information

Frederick G. Strathmann, PhD, DABCC (CC, TC)

Medical Director, Toxicology
ARUP Laboratories

Assistant Professor
Department of Pathology
Associate Member
Interdepartmental Graduate Program in Neuroscience
University of Utah

frederick.g.strathmann@aruplab.com