Targeted Molecular Diagnostics for Targeted Therapies in Hematological Disorders

Richard D. Press, MD, PhD
Dept of Pathology
Knight Cancer Institute
Knight Diagnostic Labs
Oregon Health & Science University
Portland, OR
Overview of Presentation

• CML: Targeting the causative molecular abnormality (BCR-ABL) with specific tyrosine kinase inhibitors (imatinib, etc)
• Monitoring TKI treatment with a targeted diagnostic: BCR-ABL RQ-PCR
• Clinically-relevant RQ-PCR thresholds
• Loss of response & resistance mutations
 • Both predicted by rising BCR-ABL RNA
• PCR assay standardization
 • How to realize the international scale
• Paradigm for other cancers: more genes, more drugs, more complexity
Chronic Myeloid Leukemia (CML)

- Clonal myeloproliferative disorder of pluripotent stem cells
 - ↑ proliferation, ↓ apoptosis
 - Cytogenetic hallmark: Ph chromosome
 - Molecular hallmark: Bcr-Abl
 - Bcr-Abl overexpression is causative event
- 7% to 15% of adult leukemias
- Median age @ diagnosis: 55 y
The Cytogenetic Hallmark of CML is the Philadelphia Chromosome (Ph)

22q- = Philadelphia chromosome (Ph)
BCR-ABL: The New Paradigm for the Ideal Molecular Therapeutic Target

- Causative molecular abnormality of CML
- Sole oncogenic event early in the disease
- Leukemic clone dependent on Bcr-Abl for survival
Targeted Leukemia Therapy: Imatinib
Targeted CML Therapy with Imatinib

BCR-ABL

ATP

Substrate

Tyrosine

Phosphate

ADP

Chronic myelogenous leukemia

Imatinib

Substrate

Tyrosine

Chronic myelogenous leukemia
TKI’s are the recommended front-line therapy for CML

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965-1975</td>
<td>123</td>
<td>122</td>
</tr>
<tr>
<td>1975-1981</td>
<td>132</td>
<td>127</td>
</tr>
<tr>
<td>1982-1989</td>
<td>365</td>
<td>266</td>
</tr>
<tr>
<td>1990-2000</td>
<td>960</td>
<td>357</td>
</tr>
<tr>
<td>Imatinib</td>
<td>276</td>
<td>14</td>
</tr>
</tbody>
</table>

Proportion Surviving Years From Referral

93% progression-free survival (to AP/BC) after 5 years of IM

The University of Texas M. D. Anderson Cancer Center database
The Ideal Cancer Biomarker
CML (BCR-ABL) as paradigm

- Specific (diagnostic) for the cancer cell (or cancer-causing molecule)
- Easily collected sample (blood)
- Fast, ultra-sensitive, precise lab measurement
- Quantitative levels predict:
 - Prognosis
 - Response to therapy
 - Early, impending relapse
Sensitivities Of CML Minimal Residual Disease Monitoring

Diagnosis: 10^{12} Leukemia cells

100%
- Blood counts
- Complete hematologic response

10%
- Cytogenetics
- Complete cytogenetic response

1%
- PCR
- Major molecular response

0.1%
- Undetectable range
- Complete molecular response
Bcr-Abl RNA Quantification by Real-Time Quantitative RT-PCR (RQ-PCR)

- 6 log linear dynamic range
- Limit of detection ~5 logs below “baseline” (diagnosis) levels (IS scale)
- Precision: 95% CI ~3-fold (0.5 log)
- G6PDH reference gene
The View from 30,000 Feet (ie, practical clinical utility)

• Do bcr-abl RNA levels predict clinical outcomes?
 • Disease progression
 • Evolving imatinib resistance
 • Survival

• If so, what is the target level for bcr-abl RNA that predicts good outcomes?
Achievement of a 3-log MMR Predicts Longer PFS

Hazard ratio = 7.3; 95% CI, 2.8 - 19
$p < 0.0001$

ELN Consensus Guidelines: Therapeutic Milestones (as defined by the lab)

<table>
<thead>
<tr>
<th>Month</th>
<th>Optimal</th>
<th>Suboptimal</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CHR</td>
<td>N/A</td>
<td><CHR</td>
</tr>
<tr>
<td>6</td>
<td><35% Ph+</td>
<td>Ph+ >35%</td>
<td>>95% Ph+</td>
</tr>
<tr>
<td>12</td>
<td>CCR (0% Ph)</td>
<td>Less than CCR</td>
<td>>35% Ph+</td>
</tr>
<tr>
<td>18</td>
<td>MMR (<0.1% IS)</td>
<td>Less than MMR</td>
<td>Less than CCR</td>
</tr>
</tbody>
</table>

Baccarani et al on behalf of the ELN. J Clin Oncol. 2009;27(35):6041-51
Therapeutic Milestones

<table>
<thead>
<tr>
<th>Month</th>
<th>Optimal</th>
<th>Suboptimal</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Favorable outcome likely: keep going!</td>
<td>Favorable outcome uncertain: consider alternative!</td>
<td>Favorable outcome unlikely: change strategy!</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baccarani et al on behalf of the ELN. J Clin Oncol. 2009;27(35):6041-51
What does “PCR-undetectable” mean?

How Low Can You Go?

Translation:

My assay is better than yours…
PCR Negativity (CMR) Predicts Prolonged PFS

49 month median IM follow-up

“CMR” restricted to samples with sensitivity > 4.7 logs (on IS)

Hazard ratio = 11
\(p = 0.0052\)
If low levels of MRD are good, then are rising BCR-ABL levels bad?

If so, what amount of rise is worrisome?
A Half-Log (3.2–fold) RQ-PCR Rise is a Risk Factor For Future Relapse

49 month median follow-up

No RQ-PCR rise (N=48)

≥0.5 log RQ-PCR rise (N=42)

Hazard ratio = 4.9

p = 0.0017

TKI Resistance: BCR-ABL Mutations

4 mutation “hot spots”:

- P-loop
- IM bind
- Cat
- Activation

KD mutations predict a poor prognosis (now often overcome with other TKI’s)

Progression-Free Survival (%)

Months After Mutation Screen

No mutation (n=67)
IM-treated pts
KD mutation (n=34)

P < 0.0001
Hazard ratio = 3.2

A 2.6-fold BCR-ABL Rise Optimally Predicts a Concomitant KD Mutation (ROC analysis)

J_{max} (2.6-fold)

2-fold

3-fold

5-fold

10-fold

N=150 pts with mutation screening
2.6-fold BCR-ABL rise was optimal by ROC
97% NPV (3% with mutation but no transcript rise)

Summary

• BCR-ABL RNA levels are a sensitive predictive biomarker of the response of CML to targeted therapy

• Clinically-proven prognostic thresholds include:
 • 3-log drop (MMR; 0.1% on the IS)
 • PCR-negativity (CMR)
 • Half-log rise during CCR
 • Presence of kinase domain mutations
 • Optimized threshold for mutation screening = >2.6-fold rise

• But can labs reliably measure this RNA?
Why Do We Need BCR-ABL Standardization?

CAP MRD-A (2010)
N=102 labs tested blinded samples
1/10,000 diluted K562 cells (close to 0.1% IS=MMR)
Labs report: Log-drop relative to undiluted K562 cells

Because the inter-lab distribution of results for any given sample is HUGE!

Here are the statistics:

<table>
<thead>
<tr>
<th>BCR-ABL Log Drop</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.8</td>
</tr>
<tr>
<td>Median</td>
<td>2.6</td>
</tr>
<tr>
<td>Range</td>
<td>-1.4 to 5.3 (>6 logs)</td>
</tr>
<tr>
<td>Std dev</td>
<td>0.99 logs (9.7-fold)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.83 to 4.7 (3.9 logs)</td>
</tr>
</tbody>
</table>
BCR-ABL Standardized Reporting

• IRIS trial defined 3-log drop from median baseline (MMR) as a good prognostic threshold

• MMR is an accepted therapeutic goal, now defined (by consensus) as 0.1% “international scale” (IS)
 • Baseline pretreatment level (CP-CML) = 100% IS (median)

• Until recently, no reference materials existed with a defined IS value (WHO standard recently available)
OHSU Conversion Factor Determination
N=29 shared samples

Conversion Factor = 2.22 (anti-log bias)

IS units (OHSU) = (BCR-ABL ratio) * 2.22

MMR level at OHSU (0.1% IS) = 0.045%

Before Conversion:
- 13/29 within 2-fold
- 18/29 within 3-fold
- 26/29 within 5-fold

Bias = 0.35 logs (P<0.001)

After Conversion:
- 15/29
- 27/29
- 29/29

No Bias
Conversion of BCR-ABL RQ-PCR to Standardized International Scale by inter-lab sample exchanges

Freeze dried K562 cells (b3a2) diluted at 4 levels into HL-60 cells

Nominal IS % ratio = average value from 10 different IS-standardized labs

Limited availability (3500 vials; each 1.5M cells)
Stable, well-characterized, locally-available secondary standards will be useful for:

• Easier, more widely available establishment of standardized IS-based reporting
• IS-based reporting is required for assessment of MMR, a consensus and actionable treatment goal
• Standardize the definition of the low-level detection limit for “undetectable” samples
 □ Current sample-exchange method for conversion to IS is impractical
 □ Only 10 of 136 (7%) US labs currently use IS-scale reporting [CAP survey MRD-A(2011)]
 □ So how do most labs assess treatment response goals (ie, MMR)?
Patient MK

BCR-ABL RQ-PCR (IS)(%) vs. Months on Imatinib

- CCR
- MMR

Data points:
- 0 months: 110
- 3 months: 9
- 6 months: 0.8
- 9 months: 0.26

Graph shows a downward trend in BCR-ABL RQ-PCR (IS)(%) over time.
Patient MK

BCR-ABL RQ-PCR (IS)(%)

Months on Imatinib

CCR

4-fold↑

MMR

WT

G250E (minor)
(not ordered)
Patient MK

Dasatinib or Nilotinib?

G250E (no WT)

CCR & CHR lost
RELAPSE
Low-Hanging Fruit: CML & BCR-ABL
Other Cancers will be MUCH harder
Cancer Genotyping for Personalized Cancer Therapy

Receptor tyrosine kinases

Finding drug targets

- SHC
- GRB2
- SOS
- NRAS
- KRAS
- BRAF
- MEK
- ERK
- STAT
- PI3K
- PDK
- AKT
- mTOR
- PTEN
- S6K
- mTOR
- p53

Drugs:
- Erlotinib
- Lapatinib
- PF299804
- Afatinib
- Imatinib
- RAF265
- Vemurafenib
- AZD6244
- PD0325901
- ARRY162
- BRAF
- MEK
- ERK
- STAT
- PI3K
- PDK
- AKT
- mTOR
- PTEN
- S6K
- p53

Genes:
- ALK
- p53

Other molecules:
- BEZ235
- BKM120
- BGT226
- BYL719
- MK2206
- SR13668
Mass Spectrometry-Based Detection of Genomic Mutations

PCR targets of interest
~ 100 bp amplicons

Clean-up steps

Primer extension reaction

De-salting step

MALDI-TOF Mass spectrometry
Mass Spec Leukemia Panel: 370 mutations / 31 genes

<table>
<thead>
<tr>
<th>ABL</th>
<th>FLT3</th>
<th>KRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td>FMS</td>
<td>MET</td>
</tr>
<tr>
<td>AKT2</td>
<td>GATA1</td>
<td>MPL</td>
</tr>
<tr>
<td>AKT3</td>
<td>HRAS</td>
<td>NOTCH1</td>
</tr>
<tr>
<td>BRAF</td>
<td>IDH1</td>
<td>NPM1</td>
</tr>
<tr>
<td>CBL</td>
<td>IDH2</td>
<td>NRAS</td>
</tr>
<tr>
<td>CBLB</td>
<td>JAK1</td>
<td>NTRK1</td>
</tr>
<tr>
<td>FBXW7</td>
<td>JAK2</td>
<td>PAX5</td>
</tr>
<tr>
<td>FES</td>
<td>JAK3</td>
<td>PDGFRB</td>
</tr>
<tr>
<td>FGFR4</td>
<td>KIT</td>
<td>PTPN11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOS1</td>
</tr>
</tbody>
</table>
Mutation Spectrum in AML (108 OHSU cases)

Normal cytogenetics: 78% mutation frequency
Abnormal cytogenetics: 43% mutation frequency

Mutation discovery with 31-gene mass spec panel plus single gene in-del assays (FLT3, CEBPA, KIT)

J Dunlap, in press
Next Generation (Massively Parallel) Sequencing?

- Broader coverage, including tumor suppressors
- Better sensitivity, through deeper reads
- Lower costs, through multiplexing
- More comprehensive cancer genome characterization for targeted therapeutic, prognostic, (diagnostic) discovery

Single gene assays | Multiplexed hotspots | Multigene panels | Whole exome | Whole genome
739 hotspots covered by 190 amplicons
Single tube amplification
Average amplicon length: 119 bp (100-169 bp)
Input DNA: 10 ng (Fresh or FFPE)
Turn-around time: 48 hours
46 genes:

ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNAS, HNF1A, HRAS, IDH1, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL
The Future: NGS Disease-Specific Gene Panels

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Target genes</th>
<th># Exons</th>
<th>Kilobases</th>
<th>Ampli-cons</th>
<th>New Genes (not in Ampliseq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>23</td>
<td>224</td>
<td>34.3</td>
<td>502</td>
<td>9</td>
</tr>
<tr>
<td>Colon</td>
<td>16</td>
<td>157</td>
<td>31.8</td>
<td>405</td>
<td>6</td>
</tr>
<tr>
<td>Melanoma</td>
<td>21</td>
<td>113</td>
<td>13.9</td>
<td>231</td>
<td>9</td>
</tr>
<tr>
<td>AML / ALL / MDS</td>
<td>42</td>
<td>342</td>
<td>62.6</td>
<td>863</td>
<td>28</td>
</tr>
</tbody>
</table>

- Ion Torrent custom primer design software used to design primers for library prep
- Proprietary primer modifications allow massive multiplexing: 2-4 PCR reactions per library prep
Challenges for Targeted Molecular Diagnostics

• Assay Standardization
• Gene Patents (restricted licensing)
• Costs & Reimbursements
• Regulations
 • LDT’s vs IVD’s
• Quality Control (proficiency testing)
Acknowledgements

Press Lab
Carole Rempfer
Rui Yang
Ashlie Tronnes
Zac Love
Chad Galderisi
Jennifer Laudadio
Fei Yang

Collaborators
Brian Druker
Mike Deininger
Mike Mauro
Chris Corless
Carol Beadling
Oregon Health & Science University