State of the Art in Tumor Profiling

Dora Dias-Santagata, PhD, FACMG
ddiassantagata@partners.org

Translational Research Laboratory
Massachusetts General Hospital
Harvard Medical School
Boston, MA
Disclosures

• **Intellectual Property**
 – Submission of a patent covering the SNaPshot genotyping methods

• **Consultant**
 – Bio Reference Laboratories, Inc.
State of the Art in Tumor Profiling

Learning Objectives

• Describe the main goals of clinical molecular testing

• Understand some of the challenges facing the clinical implementation of tumor molecular profiling

• Identify examples of key tumor genetic changes, for which molecular testing is being performed, to assist in therapeutic decision making
Clinical Molecular Testing

Diagnosis * Prognosis * Treatment

Molecular Diagnostics / MGH Pathology

FISH
- ALK
- ROS1
- EGFR
- MET
- PDGFRA
- FGFR1
- HER2 (non-breast)
- Ewing's Sarcoma (EWSR1)
- Myxoid Liposarcoma (CHOP)
- Synovial Sarcoma (SYT)
- Alveolar Rhabdomyosarcoma (FKHR)
- 1p19q

Genotyping
- SNaPshot Cancer Genotyping
- HER2 / ERBB2 (Exon 20 insertion/deletion)
- KRAS (codons G12, G13, Q61)
- BRAF (codon V600)
- MLH1 Promoter Methylation
- MGMT Promoter Methylation
- KRAS on Pancreatic Cyst Fluid

Chimerism
- Pre-transplant STR Genotyping
- Post-transplant Chimeris

Array CGH (MICRY)
- Proband
- Family (specify relationship to the Probands in Notes section)

Specify ICD-9 code below or in notes section:
- Multiple Congenital anomalies, NOS (759.7)
- Hypotonia, congenital (779.89)
- Dysmorphic Features (744.89)
- Delayed Milestones (783.42)
- Failure to Thrive (783.41)
- Macrocephaly (742.4)
- Microcephaly (742.1)

- CHD, unspecified (746.9)
- Cleft palate, unspecified (749.00)
- Cleft lip, unspecified (749.10)
- Skeletal anomalies, OS (756.0)
- PDD< NOS (299.90)
- Autism (299.00)

- **Hemochromatosis (HFE)**
Moving toward a genotype-based approach to guide cancer care
Specific genetic changes & sensitivity to targeted therapies

BCR-ABL Translocation: Imatinib
- 95% CML

HER2 Amplification: Trastuzumab
- 20-30% IDC

EGFR Mutation: Erlotinib/Gefitinib
- 20% Lung adenocarcinomas

BRAF V600E: Vemurafenib
- 50-60% Melanoma

ALK Translocation: Crizotinib
- 3-5% Lung adenocarcinoma
Oncogenic disruption of the EGFR RAS/MAPK pathway

Oncogenic Mutations

Growth factor-independent signaling

Targeted Therapies

EGFR inhibitors

PI3K inhibitors

PTEN

Akt/PKB

mTOR

MEK inhibitors

RAF inhibitors

BRAF inhibitors

MAPK-independent signaling pathways

Uncontrolled cell proliferation
Establishing a Clinical Genotyping Platform

Challenges and practical considerations

Clinical Test
- Performed in a CLIA lab
- Archived FFPE tissue
- Analytical sensitivity
- Turnaround time (2 weeks)
- Report in medical record

Actionable Targets
- Clinches diagnosis
- Yields prognosis
- Predicts response/resistance
- Stratify patients for trials
- Adaptability for new targets

Logistics
- Clinical patient coordinator
- Accessioning
- Tracking
- Automation
- Scalable to test all tumors

Other
- Economics
- Insurance and billing
- Translational research
- Bioinformatics
Goal: To provide oncologists with real-time high-throughput tumor genotyping for:

1. Clinical decision making
2. Accelerated development of new cancer therapies
New challenges in Molecular Pathology

Which test is best?

The problem:
- multiple tumor types
- many mutations
- a growing number of targeted therapies

Possible approach:

- Tumor A → Test 1
 - Test 2
 - Test 3
 - ...no more tissue?
- Tumor B → Test X
 - Test Y
 - Test Z
 - ...no more tissue?
- Tumor C → Test α
 - Test β
 - Test γ
 - ...no more tissue?

Informed Therapeutic Decisions

Other options:

- multiple therapeutic options pose a new need → multiplex testing

Tumor A → Test A
Tumor B → Test B
Tumor C → Test C

Informed Therapeutic Decisions
SNpShot Genotyping Assay

15 genes - 70 assays - >160 described mutations

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td>E17 - 49G</td>
</tr>
<tr>
<td>APC</td>
<td>R1114 - 3340C</td>
</tr>
<tr>
<td>APC</td>
<td>Q1338 - 4012C</td>
</tr>
<tr>
<td>APC</td>
<td>R1450 - 4348C</td>
</tr>
<tr>
<td>APC</td>
<td>T1556fs* - 4666_4667insA</td>
</tr>
<tr>
<td>BRAF</td>
<td>G466 - 1397G</td>
</tr>
<tr>
<td>BRAF</td>
<td>G469 - 1406G</td>
</tr>
<tr>
<td>BRAF</td>
<td>L597 - 1789C</td>
</tr>
<tr>
<td>BRAF</td>
<td>V600 - 1798G</td>
</tr>
<tr>
<td>BRAF</td>
<td>V600 - 1799T</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>D32 - 94G</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>D32 - 95A</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>S33 - 98C</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>G34 - 101G</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>S37 - 109T</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>S37 - 110C</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>T41 - 121A</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>T41 - 122C</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>S45 - 133T</td>
</tr>
<tr>
<td>CTNNB1 (b-Cat)</td>
<td>S45 - 134C</td>
</tr>
<tr>
<td>EGFR</td>
<td>G719 - 2155G</td>
</tr>
<tr>
<td>EGFR</td>
<td>G719 - 2156G</td>
</tr>
<tr>
<td>EGFR</td>
<td>T790 - 2369C</td>
</tr>
<tr>
<td>EGFR</td>
<td>L858 - 2573T</td>
</tr>
<tr>
<td>EGFR</td>
<td>L861 - 2582T</td>
</tr>
<tr>
<td>EGFR</td>
<td>E746_A750 - 2235_2249del</td>
</tr>
<tr>
<td>EGFR</td>
<td>E746_A750 - 2236_2250del</td>
</tr>
<tr>
<td>IDH1</td>
<td>R132 - 394C</td>
</tr>
<tr>
<td>IDH1</td>
<td>R132 - 395G</td>
</tr>
<tr>
<td>KIT</td>
<td>D816 - 2447A</td>
</tr>
<tr>
<td>KRAS</td>
<td>G12 - 34G</td>
</tr>
<tr>
<td>KRAS</td>
<td>G12 - 35G</td>
</tr>
<tr>
<td>KRAS</td>
<td>G13 - 37G</td>
</tr>
<tr>
<td>KRAS</td>
<td>G13 - 38G</td>
</tr>
<tr>
<td>KRAS</td>
<td>Q61 - 181C</td>
</tr>
<tr>
<td>KRAS</td>
<td>Q61 - 182A</td>
</tr>
<tr>
<td>KRAS</td>
<td>Q61 - 183A</td>
</tr>
<tr>
<td>MAP2K1 (MEK1)</td>
<td>Q56 - 167A</td>
</tr>
<tr>
<td>MAP2K1 (MEK1)</td>
<td>K57 - 171G</td>
</tr>
<tr>
<td>MAP2K1 (MEK1)</td>
<td>D67 - 199G</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>L1575 - 4724T</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>L1601 - 4802T</td>
</tr>
<tr>
<td>NRAS</td>
<td>G12 - 34G</td>
</tr>
<tr>
<td>NRAS</td>
<td>G12 - 35G</td>
</tr>
<tr>
<td>NRAS</td>
<td>G13 - 37G</td>
</tr>
<tr>
<td>NRAS</td>
<td>G13 - 38G</td>
</tr>
<tr>
<td>NRAS</td>
<td>Q61 - 181C</td>
</tr>
<tr>
<td>NRAS</td>
<td>Q61 - 182A</td>
</tr>
<tr>
<td>NRAS</td>
<td>Q61 - 183A</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>R88 - 263G</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>E542 - 1624G</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>E545 - 1633G</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>Q546 - 1636C</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>Q546 - 1637A</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>H1047 - 3139C</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>H1047 - 3140A</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>G1049 - 3145G</td>
</tr>
<tr>
<td>PTEN</td>
<td>R130 - 388C</td>
</tr>
<tr>
<td>PTEN</td>
<td>R173 - 517C</td>
</tr>
<tr>
<td>PTEN</td>
<td>R233 - 697C</td>
</tr>
<tr>
<td>PTEN</td>
<td>K267fs* - 800delA</td>
</tr>
<tr>
<td>TP53</td>
<td>R175 - 524G</td>
</tr>
<tr>
<td>TP53</td>
<td>G245 - 733G</td>
</tr>
<tr>
<td>TP53</td>
<td>R248 - 742C</td>
</tr>
<tr>
<td>TP53</td>
<td>R248 - 743G</td>
</tr>
<tr>
<td>TP53</td>
<td>R273 - 817C</td>
</tr>
<tr>
<td>TP53</td>
<td>R273 - 818G</td>
</tr>
<tr>
<td>TP53</td>
<td>R306 - 916C</td>
</tr>
</tbody>
</table>

Multiplexed sizing assay:

- EGFR exon 19
- EGFR exon 20
- ERBB2 exon 20
EGFR/HER2 Inhibitors
- Erlotinib
- Lapatinib
- Dacomitinib

BRAF Inhibitors
- Vemurafenib
- GSK-2118436

PI3K Inhibitors
- INK-1117
- GDC-0032
- BYL-719
- BKM-120

AKT Inhibitors
- MK-2206
- GSK-2110183
- AZD-5363
- ARQ-092

mTOR Inhibitors
- Rapamycin
- Temsirolimus
- Everolimus

- Cell proliferation
- Inhibition of apoptosis
- Angiogenesis
- Metastasis

RTK

PI3K

AKT

TSC1/2

mTOR

S6K

MEK Inhibitors
- AZD-6244
- MEK-162
- GSK-1120212

ERK

Myc
c-Jun
C-Fos
ELK-1

Ras-GTP

Raf

MEK

Sec-1
Shc
Grb2
SNaPshot Overview

Multiplex PCR → Single Base Extension Reaction → Capillary electrophoresis

Loci of interest

Electrophoretic Output

Increasing molecular weight

Relative fluorescence
SNaPshot Overview

Single Base Extension Reaction

1

G

C

2

A

T

3

C

G

Electrophoretic Output

mut
MGH SNaPshot Testing Volume

>4,500 clinical SNaPshot tests performed to date

>200 clinical SNaPshot tests per month
3 years of mutational profiling → LUNG cancer

- "Wild Type" 40%
- KRAS 24%
- EGFR 14%
- PIK3CA 4%
- TP53 6%
- NRAS 1%
- CTNNB1 2%
- BRAF 2%
- ALK rearrangement 4%
- ROS rearrangement 2%
- IDH1/AKT1/APC/PTEN/MEK1 <1%

1910 tumor specimens - 60% mutant
Overlap of Mutations - NSCLC

- **KRAS**: 129 isolated (134 total)
 - (1) **IDH1**

- **EGFR**: 63 isolated (73 total)
 - (2) **HER2**
 - 12
 - 5
 - 1

- **PIK3CA**: 15 (22 total)
 - 1
 - 2
 - 1
 - 5
 - 6

- **TP53**: (25 total)
 - 1
 - 4

- **B-cat**: (11 total)

- **ALK**: 27

Sequist et al., Annals of Oncology, 2011
Mechanisms of acquired drug resistance - NSCLC

37 patients w/ EGFR-mutant tumors → responded to EGFR inhibitors and later relapsed

Sequist et al., Science Translational Medicine, 2011
Presentation

• 61 y.o. Male never-smoker

• CT chest showed large right upper lobe mass and numerous bilateral pulmonary nodules (<5 mm) suspicious for metastasis

• Biopsy identified NSCLC, adenosquamous histology
Case 1 – NSCLC

Molecular Testing:

EGFR gene mutation: **EGFR L858R**

Therapeutic implication: confers sensitivity to EGFR TKI
Case 1 – NSCLC

Pre-Treatment Therapeutic Response Acquired Resistance

1/30/08 (RUL 6.8x4.5 cm) 3/31/08 (RUL 2.6x1.8 cm) 2/25/09 (RML 2 cm)
Case 1 – NSCLC

Molecular Testing
- Pre-Treatment ‘08
- Resistant ‘09

Clinical Trial
- MET+EGFR inhibitor therapy
- Response to therapy: tumor mass reduced by ~30%

MET gene amplification

Engelman et al., Science, 2007
Bean et al., PNAS, 2007
Case 2 – NSCLC

Genotype supports 2 independent primary tumors

→ mutational profiling of bilateral tumor masses → two distinct genotypes
→ support the clinical suspicion that this was not metastatic disease but rather two synchronous lower stage primary tumors
→ better prognosis and direct impact patient management (aggressive surgical therapy + adjuvant chemotherapy)

Tumor #1 - Right upper lobe
Adenocarcinoma (bronchioloalveolar)
KRAS G12C (c.34G>T)

Tumor #2 - Left upper lobe
Adenocarcinoma (acinar subtype)
BRAF V600E (c.1799T>A)
<table>
<thead>
<tr>
<th>Genotype</th>
<th>YR</th>
<th>Location</th>
<th>Clinical questions/staging</th>
<th>Informative?</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS 35G>A, G12D</td>
<td>2011</td>
<td>RUL</td>
<td>T3N0 vs T1aN0 x2 lesions</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>KRAS 35G>T, G12V</td>
<td>2011</td>
<td>RUL</td>
<td>T1aN0 vs T4N0</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>No mutation</td>
<td>2011</td>
<td>RUL</td>
<td>T1aN0 vs T4N0</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>No mutation</td>
<td>2011</td>
<td>RUL</td>
<td>T1aN0 vs T4N0</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>KRAS 35G>T, G12C</td>
<td>2010</td>
<td>RUL</td>
<td>T4N0 vs T1aN0 x2 lesion</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>No mutation</td>
<td>2009a</td>
<td>RUL</td>
<td>T1aN0M1a vs T1aN0 x2 lesions</td>
<td>Y</td>
<td>T1 x 2</td>
</tr>
<tr>
<td>No mutation</td>
<td>2009b</td>
<td>LUL adrenal</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2008</td>
<td>LLL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2010</td>
<td>RLL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2008</td>
<td>LLL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>EGFR 2573T>G, L858R</td>
<td>2009</td>
<td>LUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>Metastases</td>
</tr>
<tr>
<td>EGFR 2573T>G, L858R</td>
<td>2011</td>
<td>RUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>Metastases</td>
</tr>
<tr>
<td>No mutation</td>
<td>2007</td>
<td>RML</td>
<td>Met vs. metachronous 2 primaries</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>No mutation</td>
<td>2010</td>
<td>RML</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2011</td>
<td>RUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>KRAS 35G>C, G12A</td>
<td>2011</td>
<td>RUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2009</td>
<td>RUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>No mutation</td>
<td>2010</td>
<td>RLL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
<tr>
<td>TP53 742C>T, R248W; KRAS 35G>C, G12A</td>
<td>2010</td>
<td>RUL</td>
<td>Met vs. metachronous 2 primaries</td>
<td>Y</td>
<td>2 primaries</td>
</tr>
</tbody>
</table>

12/13 staging dilemmas solved! 92%!
ALK Rearrangements in NSCLC

Rapid integration of FISH

PF-02341066: Potent & selective ATP competitive oral inhibitor of MET and ALK kinases and their oncogenic variants

Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer

Manabu Soda, Young Lim Choi, Munehiro Enomoto, Shuji Takada, Yoshihiro Yamashita, Shunpei Ishikawa, Shin-ichiro Fujiwara, Hideki Watanabe, Kentaro Kurashina, Hisashi Hatano, Masashi Bando, Soji Ohno, Yuichi Ishikawa, Hiroyuki Aburatani, Toshiro Nishi, Yasunori Sohara, Yukihiko Sugiyama & Hiroyuki Mano

Genomic Alterations of Anaplastic Lymphoma Kinase May Sensitize Tumors to Anaplastic Lymphoma Kinase Inhibitors

t(2;5) ALK gene breakpoint region

Telomere | 2p23 region | Centromere

| ~250 kb | ~300 kb |

Image details and diagrams
Case 3 – NSCLC

Dramatic Improvement Following Targeted ALK Inhibition

Pre-Treatment

After 2 cycles PF02341066

50 yr-old Female
Tumor Responses to Crizotinib by Patient

Best Percent Change in Tumor Size
($n=105$ evaluable patients)

- – 30% reduction
- PD
- SD
- PR
- CR

Camidge R et al. Poster 366 presented at the 35th ESMO, 2010
PF02341066 activity in cells exhibiting ALK fusion in broad screen (McDermott et al., Canc Res, 2008)

Discovery of EML4-ALK fusions in NSCLC (Soda et al., Nature)

MGH clinical study of PF02341066 in ALK-positive NSCLC starts

FDA Approval: ALK-positive NSCLC

Timeline for approval
Genotype-based clinical trial enrollment of advanced disease NSCLC patients

<table>
<thead>
<tr>
<th>Mutant gene and targeted agents</th>
<th>Mutation-positive patients with metastatic disease</th>
<th>Clinical trial enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crizotinib ((ALK_{\text{inhibitor}}))</td>
<td>37</td>
<td>27 (73%)</td>
</tr>
<tr>
<td>Hsp-90(_{\text{inhibitor}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEK(_{\text{inhibitor}})</td>
<td>7</td>
<td>3 (43%)</td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erlotinib+MET(_{\text{inhibitor}})</td>
<td>76</td>
<td>48 (63%)</td>
</tr>
<tr>
<td>erlotinib+PI3K(_{\text{inhibitor}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erlotinib+HER3(_{\text{MAb}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(^{\text{nd}}) \text{gen EGFR}_{\text{inhibitors}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3(_{\text{inhibitor}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(^{\text{nd}}) \text{gen EGFR}{\text{inhibitor}} + \text{mTOR}{\text{inhibitor}}</td>
<td>7</td>
<td>1 (14%)</td>
</tr>
<tr>
<td>HER3(_{\text{MAb}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEK(_{\text{inhibitor}})+ chemotherapy</td>
<td>117</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>MEK({\text{inhibitor}})+ PI3K({\text{inhibitor}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsp-90(_{\text{inhibitor}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIK3CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3K(_{\text{inhibitors}})</td>
<td>16</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260 mut+</td>
<td></td>
<td>90 (35%)</td>
</tr>
</tbody>
</table>

(expanded) Sequist et al., Annals of Oncology, 2011
Tumor genetic profiling in the clinic

Breast Cancer

130 cases

HER2 amplification ~ 20-30% IDC

PIK3CA mutant Breast Cancer
- favorable prognosis – improved OS
- decreased response to treatment with HER2 inhibitors (trastuzumab, lapatinib)
- ? PI3K/mTOR inhibitors (actively pursued, encouraging data)

KRAS / BRAF mutant Breast Cancer
- ? MEK inhibitors ? / ? BRAF inhibitors ?
65yo Female with:
2005: ER+ breast cancer (localized)
2009: Disease recurrence (bone and liver):
 - Started endocrine therapy
 - Progressed on various endocrine therapies
2011: SNaPshot revealed:
 - PIK3CA E542K mutation
 - Enrolled on PI3K-alpha inhibitor trial
Case 2 – Breast Cancer

Therapeutic Application

Marked PET response with *PIK3CA*-directed Rx

Pre-Therapy

Post-Therapy
PIK3CA Mutation Distribution Across Tumor Types

Percentage of each tumor type demonstrating PIK3CA mutation

- Total: 7%
- Lung: 4%
- Colorectal: 16%
- Brain: 7%
- Breast: 33%
- Pancreas: 2%
- Other: 5%

Legend:
- # cases
- # mutant cases
- # PIK3CA mutant cases
BRAF V600E mutations are common in a subset of pediatric brain tumors

Activating mutations in PIK3CA in a rare and very aggressive skin malignancy

identify new targets for rare/poorly studied malignancies
enable rapid translation to patient care (genotype-driven clinical trials)

BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications
Dias-Santagata et al., PLoS ONE, 2011

Activation of PI3K Signaling in Merkel Cell Carcinoma
Nardi et al., Clin Cancer Res, 2012
Future Goals

Moving toward a more comprehensive tumor genetic fingerprint

Future sequencing strategies include:

- **Sanger Sequencing**
 - One exon
 - >160 hotspot mutations
 - 15 cancer genes

- **SNaPshot**
 - "Wild type"

- **Next Generation Sequencing**
 - All exons
 - Hundreds of cancer genes
Tumor Genetic Changes Drive Cancer Development

- **Copy number**
- **Indels**
- **Point mutations**
- **Rearrangements**
- **Gene expression**
- **Proteomics**
- **Gene expression**
- **Proteomics**
- **Epigenetics**
- **Non-coding RNAs**
- **FISH**

NexGen
The Next Generation of Clinical Cancer Genotyping

Clinical targeted sequencing of FFPE DNA

Goals

- 300-800 genes (5 Mb)
- 200-500X coverage
- 5 Gb data per tumor-normal pair
- 3-4 week turnaround time
- $500-700 raw reagent cost
- Tumor vs. normal
- SNV, indel, copy number
Clinical Application of Tumor Genotyping

Challenges

- **Biological/Clinical**
 - Tumor Heterogeneity
 - Tumor Evolution

- **Practical/Logistical**
 - Data Management – How to interpret data and deliver results quickly
 - Maximum Sensitivity – Resistance mechanisms
 - Rapid Evolution of Knowledge and Clinical Indications
 - Cost and Reimbursement
Prospective, multiplexed genotyping can be efficiently incorporated into clinical practice to aid clinical decision-making and to accelerate stratified clinical trial enrollment.

Broad-based tumor genotyping can identify new prognostic/therapeutic markers not previously identified in a specific cancer type.

Emerging tumor genotyping technologies including Next Generation Sequencing will be an important tool in expanding our efforts to:

- identify novel therapeutic targets
- understand differential response to treatment
- discover additional mechanisms of acquired resistance
MGH Clinical Translational Collaborators
Daniel Haber (Director)
Jose Baselga (Phase I/Director)
David Louis (Director)

Jeffrey Engelman (Lung Cancer)
Rebecca Heist (Lung Cancer)
Ignatius Ou (Lung Cancer)
Lecia Sequist (Lung Cancer)
Alice Shaw (Lung Cancer)
Mari Mino-Kenudson (Pathology)

Jeffrey Clark (GI Cancer)
Eunice Kwak (Phase I/GI Cancer)
David Ryan (GI Cancer)
Kenneth Tanabe (GI Cancer)
Andrew Zhu (GI Cancer)

Tracy Batchelor (Neuro-Onc)
Daniel Cahill (Neuro-Onc)
Andrew Chi (Neuro-Onc)

Theodore Hong (Rad-Onc)
Keith Flaherty (Phase I/Melanoma)
Steven Isakoff (Breast Cancer)

Thank you to the PATIENTS and their Families!