A Practical Example of CLSI C60 in Action: Vitamins and Hormones

Lorin Bachmann, Ph.D., DABCC
Assistant Professor, Pathology
Virginia Commonwealth University
lbachmann@mcvh-vcu.edu

AACC Conference-Mass Spectrometry in the Clinical Lab: Best Practice and Current Applications
Chicago, IL 9/6/12

Disclosures

- Thermo Fisher Scientific, Consulting

CLSI C60 “In Action” Presentation Notes

- Data shown was obtained BEFORE CLSI C60 draft guidelines were developed
- The presented data does not reflect draft guidelines in all cases, but will be used to frame discussions of draft CLSI C60 recommendations
- Draft CLSI C60 experimental design strategies are still under development and may not represent the final guidelines
- CLSI C60 Hierarchical Best Practice Recommendations will be highlighted, if available
CLSI C60 "In Action": Topics to be Covered

Stability
Blank Matrix, S/N, LLoQ
Precision, Accuracy
Linearity, Dilution
Carryover
Matrix Effects
Interferences
Quality Assurance

CLSI C60 "In Action": References

• Current Versions of Clinical and Laboratory Standards Institute (CLSI) Guidelines
• FDA Guidance for Industry: Bioanalytical Method Validation, May 2001
• European Union (EU) Directive 2002/647/EC: Analytical Methods and Interpretation of Results
• European Medicines Agency (EMA): Guideline on Bioanalytical Method Validation, Feb 2012
• Current CLIA Guidelines and CAP Checklist Items
• CLSI C60 Document Development Committee Consensus

CLSI C60 Recommendations: Stability Assessments

C60: Assess analyte stability in native matrix under appropriate storage conditions

Short-term stability at RT (Bench top)
Long-term stability at 2-8°C, -20°C or -70°C
Max # of Freeze/Thaw cycles, if applicable

FDA Experimental Design:
• General: Assess bias, imprecision - stored vs. fresh samples
 3 aliquots of 2 conc (Max 3x LLoQ and "near" ULoQ (EMA)),
• Short-term: RT for 4-24hrs
• Long-term: 3 storage durations
• Freeze/thaw: Thaw unassisted, assess at least 3 F/T cycles

CLSI Guideline Under Dev: C55, Protocols for Establishment of Sample Stability in Clinical Chemistry and Toxicology; Est release June 2013
C60: Assess analyte stability during all phases of the analytical measurement process

- Determine max bench-top processing time (ex: extracts at RT)
- Determine max storage duration of extracts/preparations in the autosampler (evaporation effects, analyte degradation)

C60: Assess stability of reagents (extraction reagents, mobile phases, IS, stock solutions)

- Monitor bias and imprecision of QC or other matrix approp test materials over duration of reagent storage

CLSI EP25 – Evaluation of Stability of In Vitro Diagnostic Reagents

- Monitor for extraction efficiency changes over time
- Monitor for degradation of IS signal, hydrogen-deuterium exchange

Determine max bench-top processing time (ex: extracts at RT)

Determine max storage duration of extracts/preparations in the autosampler (evaporation effects, analyte degradation)

CLSI C60 Recommendations: Stability Assessments

Stability of Extracts Stored in Autosampler

25-OH D3

Injected extracted cal, QC and native patient samples at T = 0

Extracts re-injected after 17hr and 24hr storage in autosampler (2-8°C)

Acceptability Criteria: ± 10% or ≤ 2 ng/mL

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Time 1</th>
<th>Time 2</th>
<th>Mean Response</th>
<th>%CV</th>
<th>Unit Dev.</th>
<th>% Diff.</th>
<th>% Diff.</th>
<th>% Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>4.9</td>
<td>5.7</td>
<td>5.3</td>
<td>2.3</td>
<td>5.3</td>
<td>7.9</td>
<td>9.9</td>
<td>10.4</td>
</tr>
<tr>
<td>Patient 2</td>
<td>5.0</td>
<td>5.5</td>
<td>5.3</td>
<td>2.3</td>
<td>5.3</td>
<td>7.9</td>
<td>9.9</td>
<td>10.4</td>
</tr>
<tr>
<td>Patient 3</td>
<td>5.5</td>
<td>6.1</td>
<td>5.8</td>
<td>2.6</td>
<td>5.6</td>
<td>7.5</td>
<td>9.6</td>
<td>10.7</td>
</tr>
<tr>
<td>Patient 4</td>
<td>5.0</td>
<td>6.1</td>
<td>5.7</td>
<td>2.5</td>
<td>5.6</td>
<td>7.7</td>
<td>9.6</td>
<td>10.7</td>
</tr>
<tr>
<td>Patient 5</td>
<td>5.5</td>
<td>6.2</td>
<td>5.9</td>
<td>2.3</td>
<td>5.8</td>
<td>7.3</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Patient 6</td>
<td>5.0</td>
<td>6.2</td>
<td>5.9</td>
<td>2.3</td>
<td>5.8</td>
<td>7.4</td>
<td>9.3</td>
<td>10.6</td>
</tr>
<tr>
<td>Patient 7</td>
<td>5.5</td>
<td>6.3</td>
<td>5.9</td>
<td>2.2</td>
<td>5.9</td>
<td>7.3</td>
<td>9.1</td>
<td>10.3</td>
</tr>
<tr>
<td>Patient 8</td>
<td>5.0</td>
<td>6.3</td>
<td>5.9</td>
<td>2.2</td>
<td>5.9</td>
<td>7.3</td>
<td>9.1</td>
<td>10.3</td>
</tr>
<tr>
<td>Patient 9</td>
<td>5.5</td>
<td>6.4</td>
<td>6.0</td>
<td>2.1</td>
<td>6.0</td>
<td>7.2</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Patient 10</td>
<td>5.0</td>
<td>6.4</td>
<td>6.1</td>
<td>2.0</td>
<td>6.1</td>
<td>6.9</td>
<td>8.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Patient 11</td>
<td>5.5</td>
<td>6.5</td>
<td>6.1</td>
<td>2.0</td>
<td>6.2</td>
<td>7.0</td>
<td>9.0</td>
<td>10.1</td>
</tr>
<tr>
<td>Patient 12</td>
<td>5.0</td>
<td>6.5</td>
<td>6.1</td>
<td>2.0</td>
<td>6.1</td>
<td>7.0</td>
<td>9.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>

CLSI C60 Recommendations: Validation of a Blank Matrix

C60: Validate a blank matrix for use in subseq validation procedures (Cal prep, LLoQ, AMR, recovery...ect)

- Ensure low bkg noise in solvent/extraction reagent
- Meas peak area of a double blank matrix (no analyte/no IS)
 - Can use BSA or stripped serum if no analyte-free native matrix

C60 Best Practice Acceptability Criteria:

- No peak OR
- Blank resp < 20% peak area of LLoQ resp and <5% of IS resp in 5-6 lots of blank material
CLSI C60 Recommendations: Signal-to-Noise (S/N)

CLSI EP17 LoD Limitations:
- LoD design is resource intense (40-60 reps/sample, 3-5 samples, 5 runs)
- LoD is not generally relevant for LC-MS/MS

C60: Calc S/N using blank matrix vs. matrix at LLoQ

C60 Best Practice Acceptability Criteria:
- S/N at LLoQ of 20:1 to ensure ruggedness

C60 Best Practice Acceptability Criteria:
- S/N at LLoQ of 16:1

S/N Verification at the LLoQ

Testosterone spiked into 2 lots of stripped serum
N=6 independent extracts, analyzed over 2 runs

<table>
<thead>
<tr>
<th>Target (ng/dL)</th>
<th>Mean (ng/dL)</th>
<th>SD (ng/dL)</th>
<th>CV (%)</th>
<th>Bias (%)</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.3</td>
<td>0.46</td>
<td>30.7</td>
<td>28.9</td>
<td>3.2</td>
</tr>
<tr>
<td>2.5</td>
<td>3.1</td>
<td>0.56</td>
<td>18.4</td>
<td>20.3</td>
<td>2.7</td>
</tr>
<tr>
<td>5.0</td>
<td>5.1</td>
<td>0.49</td>
<td>9.2</td>
<td>19.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

CLSI C60 Recommendations: Assessment of LLoQ & Precision

C60: Use CLSI EP17 to validate LLoQ
- 40 reps/sample, 3-5 samples/run over 5 runs

C60 Best Practice Acceptability Criteria:
- CV < 20% at LLoQ, < 15% bias if using a CRM

C60: Use CLSI EP5 to validate Precision
- 2 conc, 2 runs/d, in dupilc for 20d
- Calc Within-run ("Repeatability") and Between-run ("Within-Laboratory") CVs using ANOVA

C60 Best Practice Acceptability Criteria:
- CV ≤ 15% except at LLoQ where < 20% is acceptable
Precision Assessment (CLSI EP5-A2)

<table>
<thead>
<tr>
<th>25-OH D3</th>
<th>% CVwr</th>
<th>% CVbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P% BSA)</td>
<td>1.0</td>
<td>7.1</td>
</tr>
<tr>
<td>(P)</td>
<td>18.8</td>
<td>3.2</td>
</tr>
<tr>
<td>(P%)</td>
<td>38.9</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Imprecision Profile

Imprecision profile generated to determine %CV across AMR
25-OHD3 spiked into various matrices
Analyzed in quadruplicate/run for 2 runs

CLSI C60 Recommendations: Accuracy

C60: Assess accuracy using multiple approaches

C60 Best Practice (Exper described in CLSI EP15, EP9):
Validate "true"ness using a "reference of higher order" (CLSI X5, ISO 17511) listed by JCTLM (approved RMPs, ref labs and RMs)

Described in CLSI EP15
- Method Comp vs. a JCTLM-approved RMP
- Matrix-approp CRMs (pref commutable)
 (limited # of samples, RMs not necessarily commutable)
- Spike and Recovery – if RMP or RMs are unavail

C60 Alternative Approaches:
- Accuracy-Based PT Materials (limited # of samples)
- Method Comp vs. Previous Method (Bias vs. prev method only, not trueness)

> Use native patient samples whenever possible
> Analyze a min of 40 patient samples in duplicate over 5d (CLSI EP9-A2)
Accuracy: Method Comp with RMP - VDSP

- CDC/CDC VDSP
 (www.cdc.gov/labstandards/fsc.html)
 (www.cdc.gov/Research/VitaminD.aspx#vdsp)

Suggested TEs based on published biological variation data

Accuracy: Certified Reference Material (CRM)

<table>
<thead>
<tr>
<th>Single Run Analyzed</th>
<th>NIST SRM 1951</th>
<th>NIST SRM 1952</th>
<th>NIST SRM 1953</th>
<th>NIST SRM 1954</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 replicates of NIST SRMs</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
</tr>
<tr>
<td>CLSI EP15-A2: 2 reps/run, 3-5 runs</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
<td>(1.1) 6.2</td>
</tr>
</tbody>
</table>

Acceptability Criteria: ±10% or 2 ng/mL bias vs. NIST

Accuracy: Spike and Recovery

- 25-OH D3 Spiked into 8% BSA (Low Conc)
- 25-OH D3 Spiked into Stripped Serum with back-calculation

<table>
<thead>
<tr>
<th>N = 10 reps/sample over 2 runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>8% BSA</td>
</tr>
<tr>
<td>Expected (ng/mL)</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>8.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>15.0</td>
</tr>
<tr>
<td>20.0</td>
</tr>
<tr>
<td>25.0</td>
</tr>
<tr>
<td>30.0</td>
</tr>
<tr>
<td>40.0</td>
</tr>
<tr>
<td>50.0</td>
</tr>
<tr>
<td>60.0</td>
</tr>
<tr>
<td>80.0</td>
</tr>
</tbody>
</table>

C60 Best Practice:
Spike into native matrix, 3 conc (L,M,H)/5 reps (FDA)

Acceptability Criteria: ±10% or 2 ng/mL bias vs. NIST
Accuracy: Accuracy-Based PT Programs

<table>
<thead>
<tr>
<th></th>
<th>Immunoassay (ng/mL)</th>
<th>LC-MS/MS (ng/mL)</th>
<th>% Diff LC-MS/MS vs. IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-D-00</td>
<td>32.4</td>
<td>29.1</td>
<td>13.0</td>
</tr>
<tr>
<td>AB-D-07</td>
<td>32.2</td>
<td>31.9</td>
<td>4.9</td>
</tr>
<tr>
<td>AB-D-08</td>
<td>34.7</td>
<td>35.7</td>
<td>2.9</td>
</tr>
<tr>
<td>AB-D-10</td>
<td>34.0</td>
<td>36.4</td>
<td>6.4</td>
</tr>
<tr>
<td>AB-D-12</td>
<td>18.6</td>
<td>14.4</td>
<td>13.3</td>
</tr>
<tr>
<td>AB-D-03</td>
<td>11.0</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>

Note that 3-epi D3 is NOT included in the Target Value

- CAP Accuracy Based Vitamin D Survey
- CAP Testosterone and Estradiol Accuracy Survey
CLSI C60 Recommendations: Linearity

C60 Linearity: Assess Linearity Using CLSI EP6

- 9-11 (min 5) points with 2-4 reps each
- Evaluate linearity using the Polynomial Regression Method (EP6-A)

C60 Best Practice:
Use matrix-appropriate material
Serial dilutions should be avoided (prop of pipetting errors)

Linearity (CLSI EP6-A) – Polynomial Regression Approach

25-OH D3 analyzed used matrix-appropriate commercial linearity materials

Nonlinearity should be assessed for clinical significance

Linearity (CLSI EP6-A) – Polynomial Regression Approach

High Testosterone sample diluted with stripped serum

CLSI C60 Recommendations: Validation of Dilution Protocol

C60: Assess Dilutions Within and Outside of AMR

- Assess dilution effects using Recovery Experiments
 CLSI EP15-A2: 2-3 reps/sample, over 3-5 runs
- Use analyte free matrix as the dilution buffer
- Sample extracts should be diluted to avoid ME when diluting unextracted serum

Validation of Dilution Protocol

According to SOP 25-OH D3 > ULoQ (150 ng/mL), extracts are diluted 1:2

Conc tested w/in and outside of AMR
Used Recovery Experiment, 2 reps each over a single run

Acceptability Criteria: Recovery ±10% or 2 ng/mL

C60 Best Practice Acceptability Criteria:
 ➢ Recovery ±115%, CV ≤ 15%

CLSI C60 Recommendations: Validation of Carryover

C60: Assess carryover using CLSI EP10

- 3 conc (L, M, H), 10 reps/run, 1 run/vid for 5d
 (**or 20 d for manuf)
- Seq: Mid, High, Low, Mid, Low, Low, High, High, Mid

C60: Also assess carryover for a high conc sample followed by blank (FDA, EMA)

- Inject one or more blank samples immediately after high sample to validate a known limit (ex: highest physiol conc)
- Inject a blank sample after increasingly high conc samples to determine the carryover limit
Carryover Assessment – CLSI EP10

CLSI EP10 Protocol

<table>
<thead>
<tr>
<th>Run</th>
<th>% Carryover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>Mean</td>
<td>0.83</td>
</tr>
</tbody>
</table>

C60: Best Practice Acceptability Criteria

- Carryover data from EP10 should be eval in context of TEa

CLSI C60 Recommendations: Carryover (High Sample vs. Blank)

<table>
<thead>
<tr>
<th>Analysis Sequence</th>
<th>Sample Name</th>
<th>Sample Peak Area (pg)</th>
<th>Analyte Peak Area (pg)</th>
<th>Area Ratio</th>
<th>IS Peak Area (pg)</th>
<th>Conc (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient 1</td>
<td>15,000</td>
<td>1,000</td>
<td>15.0</td>
<td>10,000</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>Patient 2</td>
<td>15,000</td>
<td>1,000</td>
<td>15.0</td>
<td>10,000</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>Blank</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C60 Best Practice Acceptability Criteria:

- No peak in blank or < 20% of LLoQ

CLSI C60 Recommendations: Evaluation of Matrix Effects

Common causes of Ion Suppression/Matrix Effects in LC-MS/MS:

- Salts, phospholipids, protein content
- Effect of binding proteins, pH, or ionic strength on extr efficiency
- Free fatty acids, metabolites, other organic molecules

- Matrix effects are highly method-dependent (esp depend on sample prep)
1) Pre vs. Post Extraction Spike and Recovery (Matuszewski/CLSI-C50)

\[
\text{A} \quad \text{Neat Standard in Solvent} \\
\text{B} \quad \text{Samples Spiked POST-Extraction} \\
\text{C} \quad \text{Samples Spiked PRE-Extraction}
\]

\[
\text{% Matrix Effect} = \frac{\text{B}}{\text{A}} \times 100 \\
\text{% Extraction Efficiency} = \frac{\text{C}}{\text{B}} \times 100 \\
\text{% Process Efficiency} = \frac{\text{C}}{\text{A}} \times 100
\]

N=6 indep matrices recommended (EMA)

2) Matrix Mixing (CLSI EP7-A2) - Admixtures of patient sample to characterize ME

3) T – column infusion experiment

C60 Best Practice Hierarchical Experimental Design Strategies:

Pre vs. Post-Extraction Spike and Recovery (CLSI-C50)

10 ng/mL D3 spiked into Low Patient Pool (~1 ng/mL)

<table>
<thead>
<tr>
<th>Spiked Pre-Extraction</th>
<th>Spiked Post-Extraction</th>
<th>Dil in Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU spiked into Serum (pmol)</td>
<td>Endogenous D3 in Serum (pmol)</td>
<td>DIFF (pmol)</td>
</tr>
<tr>
<td>Rep 1</td>
<td>2050</td>
<td>2650</td>
</tr>
<tr>
<td>Rep 2</td>
<td>10050</td>
<td>2650</td>
</tr>
<tr>
<td>Rep 3</td>
<td>11500</td>
<td>2650</td>
</tr>
<tr>
<td>Rep 4</td>
<td>10050</td>
<td>2650</td>
</tr>
<tr>
<td>Rep 5</td>
<td>11500</td>
<td>2650</td>
</tr>
<tr>
<td>Mean</td>
<td>10450</td>
<td>2700</td>
</tr>
<tr>
<td>SD</td>
<td>292</td>
<td>179</td>
</tr>
</tbody>
</table>

- % Matrix Effect (B/A*100) 85.7
- % Extr Eff (C/B*100) 76.4
- % Process Eff (C/A*100) 65.5
- % Matrix Bias -14.3
- % Matrix Bias Corr for IS -2.3

C60 Best Practice Acceptability Criteria:

- Eval based on TEa requirements (CLSI EP7 – partition TE into bias, imprecision and interference components)

Eval of Matrix Effects: Matrix Mixing (CLSI EP7)

Experiment for purpose of validating surrogate matrices

But, this approach can also be used to validate ME in patient samples

Native Patient Serum mixed in proportion with Stripped Serum or 8% BSA

N=4 reps over a single run

Native Patient Serum + Stripped Serum:

- contribution from endogenous D3 in stripped serum removed

Native Patient Serum + 8% BSA:

- contribution from endogenous D3 in stripped serum removed
Evaluation of Matrix Effects: T - Infusion

Protein Precipitation

D3 in MeOH infused + injection of extracted Blk Serum

Exogenous and Other Endogenous Interferences

- Reagents and Disposables
- Collection Tube Additives
- Hemolysis, Lipemia, Icterus
- Drugs/Metabolites
- Physiological or Disease-Associated Interferences
 - Isobaric – Interferences resulting in shared product ions w/test analytes
 - Isotopomeric – Interferences that share a same precursor and product ion
 - Adducts – chemical modifications resulting in a shared precursor and product ion

CLSI C60 Recommendations: Interference Testing

C60: Check for interferences from reagents & disposables
Testo and IS in MeOH was extracted using sialized tubes

Interference obs in IS transition

C60: Check for potential endogenous interferences
†† Bile Salts in PBC patient

T2/T1 = -38% vs. Cal Curve
Interference from Collection Tubes

- Interfer is obs in 289/97 and 289/109
- Interfer is method/sample prep dependent

Interference from Preanalytical Phase: CLSI EP7

Spike and Recovery for Hemolysis
Using hemoglobin-equiv hemolysate

Patient Admixtures for Lipid Interference Testing

Note: Intralipid may contaminate the source

Dr Russell Grant and Brian Rappold
LabCorp inc.
[Slides 40 & 41]
Interference Assessment: Ion Ratios and Isobaric Compounds

- Aldosterone (361.2) 1.0
- Cortisol (363.2) 2.0
- Cortisone (361.2) 0.5
- Androstenedione (287.2) 0.7
- Testosterone (289.2) 0.8
- 17-OHProgesterone (331.2) 0.9
- Progesterone (315.2) 0.8
- Dihydrotesterone (291.2) 0.8
- 21-Desoxycortisol (347.2) 0.8
- Corticosterone (347.2) 0.4
- 11-Deoxycortisol (347.2) 0.8
- Deoxycorticosterone (331.2) 1

Chromatographic Resolution is Required

See Abstract: Steroid Interference Determination Versus Clinically Relevant Steroids – ASMS 2010 MP13 311*

QA Monitoring – Run Acceptability and Sample Acceptability

- Slope & Intercept PASS Range
- % Calibrator Recovery (ex: ±10%)
- r^2 or SE of Calibrator Curve
- Run-to-run IS Peak Area Recovery Criteria
- IS Recovery Criteria for each sample
- RT, Peak Resolution
- Presence of Interfering Peaks or Absent Peaks
- Peak Shape/Peak Symmetry
- T2/T1 Ratio Criteria (CLSI-C50)
Reagent Lot Change – Patient Comps and Linearity (CAP)

Plus chromatography acceptability criteria
Plus QC acceptability criteria (native pt based)

Periodic Accuracy Monitoring – Use of CRM

Using Patient Pools traceable to NIST SRM 972 (25-OHD)

1) Create Patient Pools near NIST SRM values
2) Calc Method Bias vs. NIST SRM
3) Apply a Correction Factor to Patient Pools to trace their values to NIST-assigned values

Q&A!