Get out the tin cans and string!
Saving your sanity using connectivity for POCT!
Objectives

- Describe connectivity and how it relates to POCT
- Outline implementation steps for connectivity
- Review troubleshooting strategies
Speaker Financial Disclosure Information

- I am employed by Instrumentation Laboratory
Connectivity Definitions

- ADT
- DHCP
- Docking Stations
- Drivers
- FTP
- Hardwired
- HTTP/HTTPS
- Interface
- Lantronix
- Middleware
More Definitions

- POCT-1A
- Remote Access
- Remote Desktop
- Servers
- SQL
- SSL
- Virtual
- VPN
- Wi-Fi
- Wireless
Connectivity

- It's like learning a new language

- Speaking and translating between the vendor, IT, LIS and the end users

- No two connections are alike either – every vendor is different and every hospital is different
Why Connectivity?
Why Connectivity?

- POCT = lab testing done at the bedside, near the patient
 - 52 different locations
- POCT = hundreds of devices
 - 171 devices
- POCT = thousands of operators running tests
 - 2525 operators
 - Some use one device, some use 5!

- Connectivity = Sanity!
Connectivity Benefits

- **Meter Inventory**
 - Approximately 170 POCT devices
 - Seven different physical locations and 52 departments utilizing POCT in some fashion
 - 5 manual tests scattered around as well
 - Monitor downloading frequency
 - Troubleshooting

- **One stop shop**
Connectivity Benefits

- **Quality Control**
 - Data can be monitored
 - Trends (both good and bad) can be fleshed out
 - Failures observed
 - Lot numbers tracked
 - Levey-Jennings reports

- One stop shop
Connectivity Benefits

- **Results**
 - Patient ID errors flagged and stopped before they cross over to LIS and EMR
 - Set parameters to flag results that may need review before sending on to LIS/EMR
 - Critical result flags to monitor compliance
 - Instrument flags – out of range errors, bad sensors, star outs, flow errors, QC failures

- One stop shop
Connectivity Benefits

- **Proficiency Testing**
 - Permanent record of results and operators for those inspectors

- **Calibration Verification**
 - Results stored and tracked
 - Graphs produced

- One stop shop
Connectivity Benefits

- **Manual testing**
 - Results entered via software at the bedside
 - Results tracked the same
 - QC tracked the same
 - Proficiency tracked the same
 - Lot numbers tracked the same
 - Competency tracked the same
 - LOS & TAT decreased thereby increasing patient satisfaction

- **One stop shop**
Connectivity Benefits

Competency
- Thousands of operators; Many locations
- Operator usage varies from hourly to once a year
- Connectivity between middleware and instruments enables lockouts
- Connectivity between e-learning software and middleware enables tracking of e-learning
- Patient testing, QC, proficiency testing and electronic learning can be used to set up a comprehensive competency program

- One stop shop
Development of a new interface for POCT competency tracking

Kerstin Halverson, BA, MS

Objective To develop an electronic interface to track elements of competency for the point of care testing (POCT) department at a multi-site pediatric hospital system.

Introduction Per the Clinical Laboratory Improvement Act (CLIA), there are six elements of competency that must be monitored for laboratory testing operators. Ensuring these elements are met and tracked year to year for non-laboratory staff can be a daunting task. Children’s of Minnesota has approximately 2200 operators across more than 40 departments in seven physical locations who are trained to perform any number of the 11 different types of POCT tests offered. Manual tracking of competency was done sorting operators by department and test type in TELCOR QML® and then matching them with spreadsheets showing staff that had completed competency each year. These large spreadsheets were generated from both the e-learning software and tabulated from Competency Fair attendance. Adding all combinations of operators and POCT tests performed at Children’s amounted to 39 eight-hour days of competency updating needed. Collaboration between Children’s Human Resources Information Systems (HRIS) staff, POCT staff and POCT middleware vendor, TELCOR, to develop an interface to transfer competency record data from HRIS software, PeopleSoft, to QML to track competencies would greatly simplify this process.

Table 1: Numbers of operators for each device type and cumulative minutes needed to update records annually.

<table>
<thead>
<tr>
<th>Device</th>
<th>Number of operators</th>
<th>Minutes to update</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>83</td>
<td>415</td>
</tr>
<tr>
<td>AVOX</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>DCA</td>
<td>54</td>
<td>270</td>
</tr>
<tr>
<td>Hemocue</td>
<td>324</td>
<td>1620</td>
</tr>
<tr>
<td>i-STAT</td>
<td>356</td>
<td>1780</td>
</tr>
<tr>
<td>Ketostix</td>
<td>225</td>
<td>1125</td>
</tr>
<tr>
<td>Rapid Trichomonas</td>
<td>27</td>
<td>135</td>
</tr>
<tr>
<td>Nova StatStrip</td>
<td>1800</td>
<td>9000</td>
</tr>
<tr>
<td>Rapid DiagSources</td>
<td>237</td>
<td>1300</td>
</tr>
<tr>
<td>Urine Pregnancy</td>
<td>340</td>
<td>3750</td>
</tr>
<tr>
<td>Urine Dipstick</td>
<td>28</td>
<td>140</td>
</tr>
<tr>
<td>Urine Dipstick</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Totals</td>
<td>3743</td>
<td>18715</td>
</tr>
</tbody>
</table>

Methodology TELCOR QML® is middleware software commonly used to transfer results from any POCT device to a hospital Lab Information System (LIS) or directly to the Electronic Medical Record (EMR). Within QML, competency parameters can be set for each device type in use. Parameter options include e-learning course records, patient tests, quality control tests, proficiency testing and/or linearity testing. When an operator meets all parameters set, they are automatically updated. An automated report is run in PeopleSoft each day looking for staff that has successfully completed POCT e-learning courses. This report is saved as a .csv file in Children’s network where QML knows to look for it. QML then automatically pulls that report and updates operator records within QML. In addition to course completion information, this report delivers information such as new hire additions, name changes, departmental changes and terminations.

Table 2: Fields needed in TELCOR QML® for operator competency information.

<table>
<thead>
<tr>
<th>Field Needed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML Operator ID</td>
<td>Internal ID</td>
</tr>
<tr>
<td>External ID</td>
<td>Operator Last Name</td>
</tr>
<tr>
<td>Operator First Name</td>
<td>Operator Middle Initial</td>
</tr>
<tr>
<td>Operator Email</td>
<td>Active Directory Account</td>
</tr>
<tr>
<td>Operator Title</td>
<td>Operator Hire Month</td>
</tr>
<tr>
<td>Operator Birth Month</td>
<td>Facility</td>
</tr>
</tbody>
</table>

Conclusion The first production interface run resulted in the update of approximately 1200 operators. This occurred in a matter of seconds. This report is scheduled on a daily basis and an alert occurs within QML if issues arise. The implementation of an e-learning interface drastically reduces the number of hours needed each year to update POCT competencies. It allows the POCT department to smoothly meet regulatory compliance, and it also eliminates the errors that occurred with manual editing of competency updates and QML operator records each year. The time saved in the POCT department will be used to concentrate on instrument upkeep and other regulatory compliance.

Acknowledgements Crystal Boylan, Sally Carter and Becky Clarke at TELCOR for their insight, teamwork and support throughout the development of this interface. Jaclyn Flippen at Children’s for her expertise and knowledge of PeopleSoft to gather the correct data needed to create the .csv file.

References

Kost GJ. Preventing medical errors in point-of-care testing. Arch Pathol Lab Med. 01;125:1307-1315

Point of Care: The Journal of Near Patient Testing & Technology (June 2013): V12-2, p.121-122
It's as easy as 1, 2, 3…or 14, 15, 16

<table>
<thead>
<tr>
<th>Field Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>QML Operator ID</td>
</tr>
<tr>
<td>External ID</td>
</tr>
<tr>
<td>Operator Last Name</td>
</tr>
<tr>
<td>Operator First Name</td>
</tr>
<tr>
<td>Operator Middle Initial</td>
</tr>
<tr>
<td>Operator Email</td>
</tr>
<tr>
<td>Active Directory Account</td>
</tr>
<tr>
<td>Operator Title</td>
</tr>
<tr>
<td>Operator Hire Month</td>
</tr>
<tr>
<td>Operator Birth Month</td>
</tr>
<tr>
<td>Facility</td>
</tr>
</tbody>
</table>
Connectivity Benefits

- BEFORE: Manual updates of all operators for each of their competencies added up to 39 eight hour days of time
- AFTER: The interface updated approximately 1200 operators in seconds
- Implementation of the e-learning interface saved time
- One stop shop

<table>
<thead>
<tr>
<th>Device</th>
<th>Number of operators</th>
<th>Minutes to update</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>83</td>
<td>415</td>
</tr>
<tr>
<td>AVOX</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>DCA</td>
<td>54</td>
<td>270</td>
</tr>
<tr>
<td>Hemocue</td>
<td>324</td>
<td>1620</td>
</tr>
<tr>
<td>i-STAT</td>
<td>356</td>
<td>1780</td>
</tr>
<tr>
<td>Ketostix</td>
<td>225</td>
<td>1125</td>
</tr>
<tr>
<td>Rapid Trichomonas</td>
<td>27</td>
<td>135</td>
</tr>
<tr>
<td>Nova StatStrip</td>
<td>1800</td>
<td>9000</td>
</tr>
<tr>
<td>Rapid Streptococcus</td>
<td>277</td>
<td>1385</td>
</tr>
<tr>
<td>Urine Pregnancy</td>
<td>540</td>
<td>2700</td>
</tr>
<tr>
<td>Uristix</td>
<td>32</td>
<td>160</td>
</tr>
<tr>
<td>Wetprep</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Totals</td>
<td>3743</td>
<td>18715</td>
</tr>
</tbody>
</table>
Connectivity

- BEFORE: 4 computers & 3 monitors
- AFTER: Single computer access from everywhere

- This was not a large institution
- Cloning hasn’t yet been perfected
- Servers are housed at a remote location
- Need access from anywhere though

- The only constant is change!
Ready Set Connect

In order to connect there must be KEY PLAYERS identified

Customer side:
- POCC &/or Project Manager
- IT – Network Architects; IT security; Server team;
- LIS/EMR resource for building result interface and validation
- ADT/Orders resource for building interface and validation
- Biomed

Vendor Side:
- Project manager for each vendor
- IT specialist – interface coordination and build
- Applications Specialist – installation, training, verification of analyzer
Ready set connect

- Indicate current and needed levels of commitment
- Identify potential reasons for resistance
- Develop action plans aimed at reducing or eliminating resistance
- Indicate responsible parties and target dates for action plan initiatives

KEEP THE BALL ROLLING!!
Before the kick off call

Customer and Vendor needs:

- Paperwork in and a clean deal approved on both sides
- BAA type agreements signed
- Customer IT department is AWARE that this is happening
- Customer IT requests submitted
- Resources assigned on BOTH sides
Kick off call

- Resources listed previously
- Project timeline – aka Implementation Plan
- Anticipated GO LIVE date (don’t forget to factor in other projects, holidays, vacation)
- An open mind – hurdles happen

- Extra credit: number of devices, locations and operators predefined
Kick off call

- Kick off call/meeting to outline the IMPLEMENTATION PLAN
 - Checklists from IT and vendors need to be completed

- Things to consider: Servers, drivers, ports, power, memory, capacity (space), network requirements, firewall requirements, batteries, cables, meters, docking stations, Wi-Fi network, dead spots, future expansion capabilities, blinking lights, space on the floors
Ready Set GO!

IMPLEMENTATION PLAN

“Detailed listing of activities, costs, expected difficulties and schedules that are required to achieve the objectives of the plan.”
Implementation Plan
Ready Set GO!

- Customer and Vendor each may have an implementation plan document
- Choose one and stick to it
- Pieces may be pulled from both to create a new version
- Use this document to stay on task and on target
Configuration Documents

Detailed step by step instructions for enabling and configuring the interface on the device is the single most useful piece of documentation.

Even if configured initially by the vendor, at some point down the road the customer is going to need to make an adjustment.
10,000 foot view – Device Connection

Steps

Establish the workflow

1. Current vs future state
2. Connectivity options – wifi/hardwired; network connections; middleware (vendor or neutral or both)
3. Instrument operation – operators; test panels; QC
4. Network access
5. Firewall restrictions
6. Server build
7. Set up interface
8. Install instrument
9. Build panels
10. Enter operators
11. Test
10,000 foot view – Middleware Connection Steps

1. Connect device to middleware – from programming an IP address into a device to configuring a Lantronix box to connect to a device

2. Connect ADT/orders feed to middleware – create port in middleware and direct or build a feed from EMR, LIS or engine to download patient information to instrument

3. Build exception processing and reporting features in middleware (translations, reference ranges, flags)

4. Build result interface in middleware (outbound HL7 message)

5. Connect middleware to LIS/EMR – build a port in LIS/EMR and point middleware result interface to that port

- For 1, 2, and 5, Firewall exceptions may need to be defined and these can be different at every customer
Interface Implementation

- If issues develop (resistance), understand the root causes and make adjustments
- Insist on individual compliance with the plan
- Instruct, educate and coach throughout the plan
- Look to others for implementation tips

- ASK QUESTIONS
Interface Implementation

- Stick to the timeline to keep the project moving
- Find your champions and allies
- Arm yourself with knowledge
- Get vendor, middleware and/or IT to work with you and show you how things work and connect
 - POCCs should educate themselves on the nuances of their IT network
- Test test test

- ASK QUESTIONS
Connectivity = Activity

- It’s a puzzle to be solved on a daily basis
- Create your network
- It’s as easy as 1, 2, 3....
- Or is it?
Connectivity Puzzle

- Using the pieces in front of you, work together to create your own POCT network
- There are 3 different instrument types in the puzzle
- Each communicates differently and independently of any other instrument type
- The pieces are somewhat color coded
- Remember that devices need to “talk” to a computer

- The final goal: Get those patient results into the chart (HIS/EMR)
Connectivity Puzzle
Reconnecting the Connectivity Puzzle: The problem piece

• Each group will now receive their problem piece
• Work together to determine the best solution for your given problem
• Each group will report their solution at the end of the given time period
Ready....Set....Go!
Problem #1: There is no network jack available

Solution Options:

1. Identify who is in charge of network jacks in the IT department
2. Order a new jack to be installed
3. Be sure the network jack is active once installed
Problem #2: Network Jack is available, but is not working

Solution Discussion:

1. Verify settings for device - DHCP versus static IP
2. Is the IP address correct
3. Has your IT changed the IP address without you knowing
4. Is there a network outage
Problem #3:
There is no Wireless signal on the unit

Solution Discussion:

1. Identify who is in charge of the wireless signal in the IT department
2. Be sure device setting needs match needs of wireless system
3. Hard wired connection with network cable may be only choice
Problem #4: There is intermittent wireless signal on the unit

Solution Discussion:

1. Verify wireless settings on device
2. Some manufacturers have multiple wireless settings to turn signal on and off while searching for Wi-Fi hub
3. Check strength of wifi on unit
4. Increase signal if necessary
Problem #5: Wireless signal is turned off on instrument

1. Check in users manual for instructions and turn on wireless signal
2. Verify your IT configuration requirements for wifi (many are moving to from 2mhz to 5mhz for better cybersecurity)
3. Make sure this instrument isn’t configured for a hardwired network cable
Implementation and Troubleshooting

- No two installs are the same
- POCCs should educate themselves on the nuances of the devices
- What lights blink when?
- What network are the devices on?
- Where are the Wi-Fi routers?
- Has IT been in the data closet again?

Have you tried turning it off and on again?
Implementation and Troubleshooting

- How is each device set up?
- Does device software need tweaking?
- Does the docking station need to be programmed?
- Does the middleware need to be edited?
- Make a cheat sheet and keep it close
Troubleshooting

- The end is NOT near
- The sky is NOT falling
- ASK questions
- Its all in the DETAILS
- POCC knowhow
- Vendor SUPPORT is there
It’s the little things

- How observant are we?
- Watch this 5 second video on the next slide to find out
Quick Connections
Its really the little things

- The lights may not seem important but knowing how they blink can save time and sanity
- Every vendor connects differently as does each hospital system
- The lights all blink differently
- That video was only 5 seconds long
- POCCs must be observant
Connectivity

- It's all about the connections
- Details details details
- Cheat sheets help
- Ask questions
- Make allies – they can be the links in your web
- Create your network and use it to help YOU
Connectivity

- It's all about the connections
References

- Camacho-Ryan, Olga and Bertholf, Robert, Monitoring Point of Care Compliance, *Clinical Laboratory News Articles*, February 1, 2016.
- http://www.businessdictionary.com/definition/implementation-plan.html
- https://www.dictionary.com/
- https://techterms.com/
Thank You!!

- Contact info: khalverson@ilww.com