We evaluated the accuracy of 90 patient serum samples for determining the pathological condition of patients. The rapid determination and analysis of carbamazepine concentration of 80 serum samples were determined using CMIA (chemiluminescent microparticle immunoassay). Carbamazepine is a prescribed anti-convulsant used mainly in the treatment of seizure disorders, but is also used to treat trigeminal neuralgia. Carbamazepine has also been useful in the treatment of manic depressive patients as an alternative to lithium therapy. Carbamazepine measurements are used to monitor patient compliance and therapy, and to diagnose potential overdose.

Methods: The carbamazepine concentration of 80 serum samples were determined using CMIA (chemiluminescent microparticle immunoassay) Architect i 2000 and dry chemistry slide method is VITROS 5600. All patients were hospitalized at Department of Neurology at the University Clinics Center of Sarajevo. The reference range of carbamazepine is 4-12 mg/L. The quality control, precision and accuracy of Architect i 2000 and VITROS 5600 were assessed.

Results: The quality control was done using quality control serums for low (5.37 mg/L), medium (9.41 mg/L) and high (16.59 mg/L). We have used commercial ABBOTT controls and got CV 1.23 % to 4.50 % for Architect i 2000. We do a quality control using quality control serums for low (4.41 mg/mL) and high control (9.65 mg/L) VITROS Diagnostic and got CV 4.14 % to 4.14 %). Mean value of carbamazepine serum concentration using ARCHITECT I 2000 (CMIA) was 6.09 +/- 1.54 mg/L and VITROS 5600 (dry chemistry slide method) was 8.47 +/- 2.01 mg/L.

It was established that the main difference between Architect i 2000 and VITROS 5600 and it was statistically significant for p < 0.0001 according to Paired samples t-test. Correlation coefficient was r = 0.965 and regression line had a slope 0.92% and 0.76% respectively. The linearity for the VITROS XT TRIG-CHOL Slides showed excellent correlation with the VITROS Chemistry Products TRIG-CHOL Slides will be developed to quantitatively measure cholesterol and triglycerides concentration in serum and plasma. The VITROS XT TRIG-CHOL Slides contains two multilayered, analytical elements coated on a polyester support. A drop of patient sample is deposited on each chemistry chip (2.5 ul for TRIG and 4.0 ul for CHOL) and is evenly distributed by the spreading layer to the underlying layers. The density of the dye formed through the reaction cascades is proportional to the triglyceride and cholesterol concentrations present in the sample on their respective chemistry chips and is measured by reflectance spectrophotometry.

Methods and Results: We have done the accuracy of 90 patient serum samples (TRIG: 21 - 504 mg/dL; CHOL: 69 - 277 mg/dL) on the VITROS XT 7600 Integrated System (in development) compared to the VITROS Chemistry Products CHOL Slides and VITROS Chemistry Products TRIG Slides on a single dry slide element. The VITROS XT TRIG-CHOL Slides showed excellent correlation with the VITROS CHOL and TRIG Slides. VITROS XT TRIG-CHOL Slides were tested in patient samples. The TRIG and CHOL test was linear from 10 mg/dL to 556 mg/dL, and the CHOL test was linear from 24.6 mg/dL to 355.4 mg/dL. The Limit of Detection (LoD) for the VITROS XT TRIG-CHOL Slides was determined on 24 determinations with 4 low level samples. The LoD for the TRIG test was 9.7 mg/dL and for the CHOL test was 6.1 mg/dL.
range for the VITROS XT TRIG-CHOL Slide exceeded 11-525 mg/dL for the TRIG test and 50-325 mg/dL for the CHOL test.

Conclusion: The VITROS XT TRIG-CHOL Slides has exhibited good correlation with serum samples across a broad measuring range with excellent precision, linearity, low end sensitivity, and measuring range on the VITROS XT 7600 Integrated System.

B-416

Comprehensive analysis of CYP2D6 variants and copy numbers using reverse-hybridization and real-time PCR based assays

A. Berndt, C. Oberkanins, H. Puehringer. ViennaLab Diagnostics, Vienna, Austria

Background: The cytochrome P450 2D6 (CYP2D6) is an important liver enzyme involved in the metabolism of up to 25% of clinically used drugs. The CYP2D6 gene is highly polymorphic, with numerous (sub)variants described in the Human Cytochrome P450 Database (www.cypalleles.ki.se). While the most frequent allelic variations are caused by single nucleotide polymorphisms and small insertions/deletions, highly homologous regions in the CYP2D6 gene locus facilitate unequal cross-over leading to large deletions, duplications and gene conversions.

Methods: We developed a reverse-hybridization assay (PGX-CYP2D6 XL StripAssay) for the simultaneous detection of 19 sequence variations in the CYP2D6 gene, which define the most prevalent alleles impacting enzyme activity in Caucasians. For the detection of copy number variations a real-time PCR based assay (CYP2D6 RealFast CNV Assay) was established. The StripAssay and real-time PCR assays were validated on 118 and 98 samples, respectively.

Results: The PGX-CYP2D6 XL StripAssay correctly identifies allelic variants with normal (*1, *2, *3, *5, *39), reduced (*9, *10, *17, *29, *41) and no (*3 to *8, *11, *12, *14, *15, *40, *58) enzyme activity, and hence allows the classification of individuals into extensive (EM), intermediate (IM) and poor (PM) metabolizers. In addition, ultra-rapid (UM) metabolizers and CYP2D6*5 carriers can be identified by quantifying their abnormal copy number status using the CYP2D6 RealFast CNV Assay. Both assays demonstrate a test accuracy of <0.99.

Conclusion: The metabolizer phenotype of patients treated with CYP2D6 substrates can be accurately determined by the combined use of both assays.

B-417

Performance of Total Protein, Ultra HDL, Alamine Aminotransferase, Urea Nitrogen and Phosphorus on the Alinity c Analyzer

A. E. Reeves, M. Berman, L. Templin, S. Syed, B. Diaconeasa. Abbott, Abbott Park, IL

Objective: To evaluate analytical performance utilizing photometric technologies for detection of analytes in human plasma/serum and urine on the Alinity c Analyzer. Abbott’s next-generation clinical chemistry analyzer. The Alinity c Analyzer is a high throughput instrument testing up to 900 tests per hour. The sample is dispensed into a cuvette followed by reagents. The contents are mixed and incubated allowing for the reaction to occur. If a second reagent is required, the second reagent is added to the cuvette; the contents are mixed again and incubated. Absorbance readings of the sample are taken at regular intervals throughout the process at a primary and if applicable, a secondary wavelength. Data reduction generates a calculated absorbance based on the reaction mode of the assay (rate or end point) and measures the calculated absorbance using a calibration curve to generate a result.

Methods: Key performance testing including precision, linearity, limit of quantitation (LoQ), and method comparison were assessed per CLSI protocols. An assay’s measuring interval was defined by the range across which acceptable performance for bias, imprecision and linearity was met.

Results: Total imprecision, LoQ and linearity results along with the defined measuring interval for all analytes are shown in the following tables. Results versus the comparator assay demonstrated a slope 0.97 – 1.01 and r = 0.99 - 1.00.

B-418

Total Error Profiles - A New Method for Visualizing Product Performance

S. Schneider1, V. Petrides1, S. Westgard2, B. Renley3, A. Orzechowski4; 1Abbott, Abbott Park, IL, 2Westgard QC Inc, Madison, WI

Introduction: The sigma value is a commonly used metric for comparing products and is derived from the TEa, precision, and bias determined at a single critical point. In a clinical laboratory, the sigma value is one simple aid determining whether a product is fit-for-use. Often, however, laboratoryists want to understand the performance of a product beyond a single critical point. A Total Error Profile is a valuable tool that can be used to visualize the performance of a product across a range of concentrations.

Methods: A Total Error Profile was created to visualize the performance for three immunoassays. For a given assay, the total error was estimated at multiple concentrations across the assay’s measuring interval using the equation: %total error = 2 x %CV + |%bias|. To estimate the precision (%CV), a study was conducted at Abbott on each assay using the Alinity i-series per CLSI EP05-A2 where assay controls and panels were tested in replicates of 2-3 during 2 runs each day for 20 days, and the data were used to calculate a within-laboratory %CV. To estimate the %bias, > 70 serum samples with concentrations spanning the assay’s measuring interval were tested in duplicate on Abbott on the Alinity i-series and ARCHITECT 2000i systems. The mean concentration of the Alinity i-series results were regressed versus the mean ARCHITECT 2000i results and a weighted Deming regression model was fit. Using the regression model, the %bias was estimated at the same concentrations at which the precision samples were tested. A Total Error Profile was created by plotting the %total error values versus the mean concentration values for the Alinity i-series. Sigma values were calculated using the equation: sigma = (%TEa + |%bias|) / %CV. Additionally, a precision profile was created by plotting the within-laboratory %CV values versus the mean concentration values.

Results: The Total Error Profile is a continuous function across multiple concentrations for each assay. The Total Error Profile provides additional rigor compared to the %bias for defining the %total error across the measuring interval. Another benefit of the Total Error Profile is that it is not dependent on the TEa goal. This approach is particularly useful for assessing assays with more than one medical decision point and for assays with wide measuring intervals. By providing a detailed analytical understanding of the expected assay performance, these profiles can be useful tools for helping laboratoryists understand the full dynamic performance characteristics of each assay and the potential impact to patient results.

B-419

An Aptamer Technology Platform for Cancer Diagnosis

Background/Objectives: The gold standard in cancer diagnosis is morphological and molecular pathology of a biopsy, which is crucial for timely and effective treatment
of cancers. Molecular diagnoses of cancers using protein biomarkers are mostly antibody-based immunoassays. Development of immunoassays for cancer diagnosis has been hindered by the availability and inherent properties of antibodies. Thus alternative affinity reagents are in need for the development of cancer diagnostics. Aptamers are short (15-100 nt) ssDNAs/RNAs that bind their targets avidly and specifically. Aptamers are often called “chemical antibodies”, due to its nature of in vitro selection and chemical synthesis. The advantages of aptamers compared to antibodies are broader target range (from small chemicals to macromolecules), better batch consistency, lower cost and they are more amenable to diverse assay formats. Here, we present an aptamer technology platform for cancer diagnostics.

Methods: Systematic Evolution of Ligands by EXPonential enrichment (SELEX) was utilized to develop various schemes for in vitro selection of both DNA and RNA aptamers. The aptamer technology platform was then applied in a case study of a diagnostic assay for lung cancer.

Results: The variables of aptamer selection schemes were optimized including the library design, the target immobilization methodology, the enzymology for incorporating modified nucleotides into DNA/RNA and the bioinformatics pipeline for aptamer candidate identification. Through the optimization and development, we have established an aptamer selection platform integrating SELEX seamlessly with Next Generation Sequencing (NGS) with high success rate (>80%) of aptamer selection. The aptamer technology platform was applied to develop aptamers for ten biomarkers of lung cancer (e.g. follistatin) with nM affinity (Kₐ) (Fig 1). Aptasensors for early diagnosis of lung cancer are under development.

Conclusion: We have developed an aptamer technology platform with great potential in cancer diagnosis.

A. SELEX-based Aptamer selection

B. The affinity of a representative aptamer

Fig 1. The scheme of aptamer selection based on SELEX (A) and the affinity of a representative aptamer developed (B)

Result consistency of cobas e 801* compared with Roche systems E170, cobas e 601 and cobas e 602 demonstrated in 6 European and US labs

I. Zahn⁵, A. Leichtle¹, S. Wang¹, G. Soria⁴*, P. Johnson¹, C. Bendavid⁶, M. McGovern¹, ¹Laboratory Dr. Limbach and Colleagues, Heidelberg, Germany, ²University Institute of Clinical Chemistry, Inselspital, University of Bern, Switzerland, ³Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, ⁴Laboratori de Referencia de Catalunya, Barcelona, ⁵Laboratoire de Biochimie, CHU Rennes, France, ⁶Roche Diagnostics GmbH, Mannheim, Germany

Background: Manufacturers of in vitro diagnostic products design and develop new analytical systems to meet changing needs of different types of laboratories. When introducing a new technical solution for lab testing in order to, for example enhance testing efficiency, it is of ultimate importance to maintain consistency of analytical results. During a multicenter performance evaluation study in six labs, we compared the results generated on the new immunochemistry analyzer cobas e 801 with those generated on the three established Roche high throughput systems, MODULAR E170, cobas e 601 (cobas 6000) and cobas e 602 (cobas 8000). Here we report the outcome of our testing on all four analyzers for nine assays in the areas of cardiac, thyroid, oncology and fertility.

Methods: Testing on the cobas e 601 module was done using preselected left-over samples and conducted in parallel to that on a cobas e 801 module. For comparisons with the E170 and the cobas e 602 modules, results generated during routine testing on multiple routine analyzers were compared with those generated under simulated routine conditions on the cobas e 801 study systems. Left-over samples were used according to the attained site specific ethic commission or internal review board waiver.

Results

Overview comparisons cobas e 801 versus MODULAR E170, cobas e 601 and cobas e 602
Abbott Alinity c Sigma Metrics and Precision Profiles for Clinical Chemistry Assays

S. Westgard1, V. Petrides2, S. Schneider3, M. Berman2, A. Orzechowski2
1Westgard QC Inc, Madison, WI, 2Abbott, Abbott Park, IL

Introduction: Assay performance is dependent on the accuracy and precision of a given method. These attributes can be combined into a sigma metric, providing a simple value for laboratorians to use in evaluating test methods. In addition to sigma metrics, precision profile charts can be used to visually assess the precision performance of a product across a concentration range. Sigma metrics were determined for a high range of clinical chemistry assays tested on the Alinity c-series. Additionally, precision profile charts were created for a subset of assays to compare the precision performance of the assays tested using the Alinity c-series and the ARCHITECT e-series.

Methods: A sigma value was estimated for each assay and was plotted on a method decision chart. The sigma value was calculated using the equation: sigma = (%TEa + |%bias|) / %CV. A precision study was conducted at Abbott on each assay using the Alinity c-series per CLSI EP05-A2 where assay controls and panels were tested in replicates of 2-3 during 2 runs each day for 20 days, and the data were used to calculate a within-laboratory %CV. To estimate the %bias, 40-100 serum samples with concentrations spanning the assay’s measuring interval were tested in duplicate at Abbott on the Alinity c-series and ARCHITECT e-series systems. The mean concentration of the Alinity c-series results were regressed versus the mean concentration of the Alinity c-series results. Sigma metrics, method decision charts, and precision profile charts can be valuable tools for evaluating and comparing product performance by providing a comprehensive understanding of expected assay performance. The majority of Alinity c-series clinical chemistry assays had sigma values greater than 5. The precision performance on the Alinity c-series and ARCHITECT c-series was comparable for the subset of assays for which a precision profile was created. Laboratorians can use these tools as aids in choosing high-quality products, further contributing to the delivery of excellent quality healthcare for patients.

Conclusion: Sigma metrics, method decision charts, and precision profile charts can be valuable tools for evaluating and comparing product performance by providing a comprehensive understanding of expected assay performance. The majority of Alinity c-series clinical chemistry assays had sigma values greater than 5. The precision performance on the Alinity c-series and ARCHITECT c-series was comparable for the subset of assays for which a precision profile was created. Laboratorians can use these tools as aids in choosing high-quality products, further contributing to the delivery of excellent quality healthcare for patients.
Fundamental evaluation of a novel reagent for Interleukin 2 receptor measurement using general clinical chemistry analyzers

E. Hamada, N. Taromaru, M. Maekawa. Hanamatsu University School of Medicine, Hanamatsu, Japan

Background: Soluble interleukin 2 receptor (IL-2R) is generally used for the diagnosis and disease activity monitoring for malignant lymphoma and any other lymphoproliferative disorders in routine laboratories. Recently, a novel reagent based on the latex enhanced immunoturbidimetric method for use on fully automated general clinical chemistry analyzers has been developed. Here we evaluated the analytical performance of this novel reagent, Nanopan IL-2R (Sekisui Medical Co., Japan). We also examined the distribution of serum IL-2R concentration in our routine laboratory.

Methods: Serum samples collected from our inpatients/outpatients were used to evaluate the analytical performance of a novel reagent, Nanopan IL-2R on the 7180 Clinical Analyzer (Hitachi High-Technologies, Japan), and compared with IMMULITE 2000 XPi Immunoassay System and its dedicated reagents (Siemens Healthcare Diagnostics, USA) using correlation analysis. We also investigated the distribution of inpatient/outpatient serum IL-2R concentrations falling above the upper reference limit (582 U/mL) from December in 2003 to November in 2015 (12 years) using the clinical research database system. Moreover, patients with serum IL-2R concentration above 10000 U/mL were separately assessed for their pathological conditions. These studies have been approved by the ethical committee in Hamamatsu University School of Medicine. **Results:** Serum IL-2R was measured in 10646 specimens for 12 years and concentrations above the upper reference limit were observed in 2258 patients. Approximately half of the specimens were ordered by hematologists. Significant elevation above 10000 U/mL was observed in 1.6% of the total specimens. The highest value of 131000 U/mL was observed in a patient with malignant lymphoma. Other patients with significantly elevated levels of IL-2R carried malignant lymphoma, leukemia, malignant diseases, autoimmune diseases and infections. The within-run precision (CV) examined using control specimens was 2.14, 1.22 and 1.32% at approximately 500, 2000 and 5000 U/mL, respectively (n=20). The dynamic range was from 50 to 10000 U/mL. No significant interferences were observed with coexisting materials when analyzed with Interference Check A Plus and Interference Check RF Plus (Sysmex Co., Japan). The relationship between Nanopan IL-2R and Immulite 2000 examined using patient specimen was 0.992 for the correlation efficient and y=0.979x - 5.40 for the regression line (n=168).

Discussion: The basic performance of Nanopan IL-2R was acceptable. This latex enhanced immunoturbidimetric assay reagent can be applied on any general clinical chemistry analyzer and does not require specific immunoassay analyzers. The dynamic range is acceptably wide and reasonable relative to the distribution of serum IL-2R concentrations in our hospital. In conclusion, this reagent would be useful for the diagnosis and monitoring of lymphoma and other lymphoproliferative disorders.
Technology/Design Development

Test Case Description

<table>
<thead>
<tr>
<th>Script 1</th>
<th>Script 2</th>
<th>Script 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMRV, Treponema, EBV Panel, HSV-1,2, Toxo IgG, Rubella IgG & IgM, CMV IgG & IgM, plus Vitamin D on LIASON XL</td>
<td>MMRV, Treponema, EBV Panel, HSV-1,2, Toxo IgG, Rubella IgG & IgM, CMV IgG & IgM, plus HAV IgM on XL, ANA on BioPlex 2200</td>
<td>MMRV, Treponema, EBV Panel, HSV-1,2, Toxo IgG, Rubella IgG & IgM, CMV IgG & IgM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measured Variable</th>
<th>LIASON XL</th>
<th>BioPlex 2200</th>
<th>LIASON XL</th>
<th>BioPlex 2200</th>
<th>LIASON XL</th>
<th>BioPlex 2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assays Completed</td>
<td>729</td>
<td>631</td>
<td>900</td>
<td>895</td>
<td>839</td>
<td>818</td>
</tr>
<tr>
<td>Total Samples Processed</td>
<td>350</td>
<td>324</td>
<td>350</td>
<td>348</td>
<td>348</td>
<td>338</td>
</tr>
<tr>
<td>Total Test Time</td>
<td>6 h 23 min</td>
<td>6 h 23 min</td>
<td>8 h 05 min</td>
<td>8 h 05 min</td>
<td>7 h 29 min</td>
<td>7 h 29 min</td>
</tr>
<tr>
<td>Time to First Result</td>
<td>32 min</td>
<td>44 min</td>
<td>34 min</td>
<td>44 min</td>
<td>33 min</td>
<td>44 min</td>
</tr>
<tr>
<td>Time to Pipette 100 Assays</td>
<td>48 min</td>
<td>63 min</td>
<td>47 min</td>
<td>48 min</td>
<td>48 min</td>
<td>60 min</td>
</tr>
<tr>
<td>Time to First 100 Results</td>
<td>1 h 17 min</td>
<td>1 h 47 min</td>
<td>1 h 25 min</td>
<td>1 h 33 min</td>
<td>1 h 19 min</td>
<td>1 h 32 min</td>
</tr>
<tr>
<td>Time to First 200 Results</td>
<td>2 h 02 min</td>
<td>2 h 37 min</td>
<td>2 h 17 min</td>
<td>2 h 29 min</td>
<td>2 h 17 min</td>
<td>2 h 36 min</td>
</tr>
</tbody>
</table>

Conclusion: The LIASON XL illustrated a faster time to first result and a higher throughput; regardless of the test menu it was presented with. Multiplex technology has the potential to have a very high throughput of tests, if tests ordered on patient samples utilize all of the tests on each bead. In a real life laboratory environment, tests are not ordered in the multiplex bead configuration and therefore, the BioPlex 2200 is not able to maximize the technology. The LIASON XL is not inhibited by reagent configuration, as each assay has its own individual reagent; therefore, allowing for consistent time to pipette assays, time to first result, and time to complete testing.

B-427

Using Dried Tissue Homogenates to Preserve Solid Biospecimen for Molecular Analysis

R. T. Taylor, A. Fuentes, D. Shrivast, R. Magesh, J. E. Hill, J. R. Hill. **Spot On Sciences, Austin, TX**

Background: Solid biospecimens from excised tissue represent a great source of molecular information that enables the discovery and development of personalized medicine and molecular diagnostics. Conventional methods for preservation of solid biospecimens such as FFPE or flash freezing have numerous limitations including, sample integrity, cost, infrastructure, and can be hazardous to the end user. We propose an innovative and universally accessible method to streamline biospecimen preservation, leveraging the advantages and successes from dried blood spot technology. The objective of this study is to assess the feasibility of preserving solid biospecimens such as FFPE or flash freezing have numerous limitations.

Methods: 30 - 50 mg of rat tissue (liver, kidney, lung, heart, and spleen) was excised from a frozen section and homogenized with PBS in a Dounce homogenizer. The homogenate was then added to a Hemaspot -HF device by pipette and allowed to dry at room temperature. Total RNA was extracted using the E.Z.N.A. mini column (Omega BioTek) and quantified by NanoVue and or a RiboGreen assay. RNA quality was determined by a Bioanalyzer. Reverse transcription was carried out by SuperScript IV (Applied Biosystems) and p53 expression was measured by Taqman (ABI). Genomic DNA was isolated from dried homogenates by a white blood cell homogenate was then added to a HemaSpot -HF device by pipette and allowed to dry at room temperature. The criteria used for acceptable RNA was an absorbance values (A260/A280) of ≥ 1.8. The p53 gene was detected by Taqman analysis in all tissue types studied (liver, kidney, and spleen) with greatest expression observed in rat liver tissue. The highest content of genomic DNA was observed in the dried liver samples.

Conclusion: The ability to detect molecular analytes from dried solid biospecimens demonstrates feasibility for preserving tissue biopsies as dried homogenate for molecular analysis. This method provides a simplified, low cost tissue specimen preparation and storage method with minimal processing and refrigeration while maintaining sample integrity for analysis of critical molecular analytes.

B-428

Basic performance of the new sepsis marker; presepsin immunoassay on STACIA®

T. Matsuo, S. Matsushita, S. Tashiro, T. Omo. **Research & Development Department, LSI Medience Corporation, Chiba, Japan**

Background/Purpose: Presepsin is a useful sepsis biomarker found in Japan. It is known to be produced by cleavage of CD14 with some proteases in a phagocytosis process. Therefore, it is said that presepsin value is less susceptible to the effect of trauma, burns and surgery than PCT and also increases rapidly at an early stage of sepsis. As a result, presepsin is also said to reflect the clinical course and severity of sepsis patients well. Recently, presepsin received higher recommendation than PCT as an auxiliary diagnostic test in Japanese version of sepsis guideline 2016.

We evaluated the assay performance of a new presepsin immunoassay on STACIA® and examined its usefulness, reliability and continuity with a current PATHFAST® Presepsin data.

Principles/Methods: STACIA® is an all-in-one instrument which consolidated major clinical assay principles such as chemiluminescence enzyme immunoassay (CLEIA), coagulation time, chromogenic substrate, latex agglutination, immunoturbidimetry, biochemistry. All results are available within 19 minutes and throughput is 270 tests per hour with fully random access.

Results: The test method of presepsin assay on STACIA® is fully automated one-step sandwich immunoassay based upon CLEIA. Alkaline phosphatase (ALP)-labeled anti-presepsin monoclonal antibody reacts with presepsin in sample. After that, anti-presepsin monoclonal antibody-coated magnetic latexes (MG-LTX) specifically react with presepsin. Finally, after B/F separation, ALP on MG-LTX decomposes CDP-Star® substrate to an excited intermediate, which produces luminescent signal. Presepsin concentration is determined by comparison with the calibrator signal.

Results: The presepsin assay has an analytical assay range from 50 to 20,000 pg/mL. Between day repeatability showed that a within-run and a total imprecision were less than 5%. Dilution recovery was excellent with mean recoveries within ±10% for all samples. Method comparison against PATHFAST® Presepsin showed a good correlation: y = 1.06x - 43.24, r = 0.994, n = 142 (y: STACIA®; x: PATHFAST® Presepsin). Further, it was shown a good correlation between plasma and serum samples: y = 0.99x + 31.07, r = 0.994, n = 98 (y: serum, x: EDTA plasma). The reference interval for normal donors was 59.0 - 249.6 pg/mL, n = 198 (EDTA plasma).

Conclusions: The newly developed presepsin immunoassay was rapid and precise assay. In addition, it was highly correlated with the current method and further it could test large numbers of specimens at central laboratories. These results suggest that STACIA® presepsin is useful for the daily monitoring of sepsis patients. Furthermore, that may lead to the rapid medical care, e.g. drug administration for treatment of sepsis.

B-429

Evaluation of the Roche immunochemistry platform cobas e 801 module

S. Wang1, D. Payto1, J. Daniel1, M. Mitro1, A. Ridgway1, J. Hatheway1, J. Layton1. 1Department of Laboratory Medicine Cleveland Clinic, Cleveland, OH, 2Roche Diagnostics, Indianapolis, IN

Objectives: The cobas e 801 module was evaluated by Cleveland Clinic Laboratories with selected applications of assays that represent the entire assay menu and challenge all functionalities of the cobas e 801 module. The cobas e 801 module is the newest member of the cobas 8000 modular analyzer series. The cobas 8000 modular analyzer series system is a fully automated, random-access, software controlled system for immunoaassays and photometric analysis. The evaluation configuration consisted of cobas 8000 core and a cobas e 801 module.

Methods: The system and selected assays were evaluated for within-run-precision (1 run x 21 replicates on one measuring cell), repeatability CLSI (EP05-A3) (21 days x 2 runs/day x 2 replicates), performance of daily QC as a measure of calibration stability, routine simulation precision, in which a test CV based on randomized testing is compared to a CV based on within-run batch testing.

Clinical Chemistry, Vol. 63, No. 10, Supplement, October 2017

S263
Results: Within-run-precision was well within acceptance criteria of CV ≤5% for all assays except folate, which had acceptance criteria of SD <0.35. Repeatability precision met the acceptance criteria of CV <5%.

<table>
<thead>
<tr>
<th>Test, Unit</th>
<th>Within-Run-Preion %CV</th>
<th>Repeatability (21 days) %CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean CV</td>
<td>mean CV</td>
</tr>
<tr>
<td>A-HCV II, COI</td>
<td>0.07</td>
<td>1.1</td>
</tr>
<tr>
<td>CA 15-3, U/mL</td>
<td>22.1</td>
<td>1.7</td>
</tr>
<tr>
<td>CEA,n/mL</td>
<td>4.86</td>
<td>1.1</td>
</tr>
<tr>
<td>E2, pg/mL</td>
<td>87.6</td>
<td>9.0</td>
</tr>
<tr>
<td>FOL, ng/mL</td>
<td>2.80</td>
<td>5.5</td>
</tr>
<tr>
<td>FT4, ng/dL</td>
<td>1.19</td>
<td>1.5</td>
</tr>
<tr>
<td>Pio BPNST (STAT) pg/mL</td>
<td>148</td>
<td>1.1</td>
</tr>
<tr>
<td>Pio BPNP, pg/dL</td>
<td>132</td>
<td>1.3</td>
</tr>
<tr>
<td>TESTO, ng/dL</td>
<td>551</td>
<td>1.4</td>
</tr>
<tr>
<td>TSH, µU/mL</td>
<td>1.49</td>
<td>0.8</td>
</tr>
</tbody>
</table>

1 SD is 0.15 (criteria SD <0.35) Performed on only one measuring cell.

Precision of daily QC was evaluated on 8 tests over a period of days (shortest 65 days to longest 95 days), with multiple runs and reagent e packs between calibrations. Good precision for two control levels demonstrated acceptable calibration stability (CV’s 1.7% to 3.7%). Routine simulation precision testing with 627 requests analyzed in 2 hours 19 minutes had reference CV’s of 0.7 to 2.0 and random CV’s ranging 0.8 to 1.6.

Conclusion: Analytical performance on the cobas e 801 module met acceptance criteria for within-run-precision, repeatability, QC precision over many days, runs and reagent e packs demonstrating calibrating stability, and routine simulation precision.

B-431

A Novel High Speed and High Performance Calprotectin PETIA for Serum and Plasma Samples

J. Yang, A. Huk, K. Sundne, T. Nilsen, M. Petersen. Gentian Diagnostic AS, MOSS, Norway

BACKGROUND

Human calprotectin (MRP8/MPR14) in serum and plasma has proven in several publications to be a promising inflammation bio-marker in several inflammatory conditions. Currently only ELISAs exist for the quantification of calprotectin in serum and plasma.

A fast, high performance Calprotectin PETIA (Particle Enhanced Tubidimetric Immunoassay) is under development by Gentian Diagnostic AS. It is believed to be cheaper and faster (due to random access options) than Calprotectin ELISAs.

The assay uses polyclonal avian antibodies, raised to detect human MRP8/MPR14 complexes. Avian antibodies have the advantage of not reacting with rheumatoid factors, human anti-mouse IgG antibodies (HAMA) or the human complement system.

The assay calibrators contain highly pure calprotectin antigen from human granulocytes, value assigned by UV and Biuret.

The purpose of this study was to demonstrate high speed and high performance of the Gentian Calprotectin PETIA on Abbott Architect c4000 Clinical Chemistry Analyzer.

METHODS

Calprotectin was measured in human serum and plasma samples using the Gentian Calprotectin PETIA on Architect c4000. The assay consists of reaction buffer (R1) and immunoparticles (R2), calibrators (6 levels) and controls (2 levels).

The following studies were performed and assessed according to CLSI guidelines, where applicable:

- Precision (within run and total within lab)
- Detection capability (LoD, LoQ and LoQ)
- Linearity
- Security zone
- Interference and cross-reactivity
- Between instrument variations and lot variations
- Method comparison (vs IDK® Calprotectin ELISA)
- Assay stability

The assay was designed to have a calibration range of approx. 0-20 mg/L, with QC controls of ~1.0 and ~10.0 mg/L.

RESULTS

Gentian Calprotectin PETIA demonstrated:

- Detection capability: LoB (0.05 mg/L); LoQ (0.07 mg/L); LoQ (0.30 mg/L)
- Security zone up to 100 mg/L
- Within run precision: CV from 0.24 % to 3.45 % for samples in the range (0.90-16.0 mg/L); total within lab precision (20 days, 2 runs per day, 2 replicates per run): CV < 6% for samples in the range (0.90-16.0 mg/L)
- Linear range: 0.39-18.19 mg/L
- Method comparison (vs IDK® Calprotectin ELISA): correlation (R² > 0.98) when measuring serum samples (n >100; n: number of samples) spanning from approx. 0.50-18.0 mg/L
- Lot variations: average % bias (Blind Altman) between two lots was 4.20 % when measuring serum samples (n >100) spanning from approx. 0.50-18.0 mg/L
- Instrument variations (Architect c4000 vs Mindray BS400): average Passing Bablok slope 1.02 and average intercept 0.03 mg/L when measuring serum samples (n >100) spanning from approx. 0.50-18.0 mg/L
- Interference: no significant interference was detected by testing 8.0 g/L hemoglobin, 600 mg/L bilirubin and 10.0 g/L intralipid.
- Cross reactivity: no significant cross reactivity was observed with monomer MRP8, MRP9 and MRP6
- Assay stability: on board stability of reagents (/> 8 weeks); calibration curve stability (2 weeks)
- Total test time: approx. 10 minutes

CONCLUSIONS

The Gentian Calprotectin PETIA demonstrates high speed and high performance in these evaluation studies. The assay could be used as tool for professional lab users in order to measure calprotectin in serum and plasma precisely, accurately and rapidly.

B-433

Development of a Novel Assay for the Simultaneous Identification of Deinococcus radiodurans and Determination of Susceptibility to a Selected Antibiotic

J. Faro, G. Riddle, S. Faro. The Woman’s Hospital of Texas, Houston, TX

Objective: To examine the ability of a novel diagnostic ELISA to identify Deinococcus radiodurans in a reduced time when compared to culture. D. radiodurans is a relatively new bacteria, first discovered in spoiled food which had first been irradiated. Although slow growing, the bacterium has been shown to be very resistant to radiation, extremes in temperature, and dehydration. As culture of this organism may take up to two weeks, food and beverage handlers, as well as medical device manufacturers, would benefit greatly from an assay that allows for more rapid detection of D. radiodurans.

Methods: Microtiter wells were coated with polyclonal IgG rabbit antibody directed against D. radiodurans at a dilution of 1:50 in coating buffer. After 120 minutes, wells were emptied and then blocked with BlockingEcht™. After blocking for 30 min, wells were emptied, and then bacterial isolates were added. For the 30-minute test, a series of dilutions of D. radiodurans were prepared in PBS, starting at 10⁵ bacteria/ml, and diluting out ten-fold to 10⁶ bacteria/ml. Samples were either run with D. radiodurans alone, or in the presence of other selected bacteria (Staphylococcus aureus, Enterococcus faecalis, Gordonia, Streptococcus agalactiae, Kocuria, Roseomonas) all at 10⁵ bacteria/ml. In order to increase the limit of detection, D. radiodurans dilutions were prepared in FastidiousBroth™, and cultured for predetermined lengths of time. After this culture period, samples were added to microtiter wells diluted 1:1 in phosphate buffered saline (PBS), and allowed to stand at room temperature for 30 minutes. Following this incubation step, wells were washed, and then bound bacteria was detected with HRP-conjugated anti-D. radiodurans antibody at 1:50 dilution for 20 minutes at room temperature. Wells were then washed, and signal was generated with TMB solution. Optical density was read at 450 nm.

In order to determine antibiotic susceptibility, D. radiodurans dilutions were incubated for 72 hours in increasing concentrations of Cefazolin, starting at 0.08 mg/ ml, and increasing up to 32 µg/ml. Cefazolin was selected from a panel of antibiotics which were shown to promote inhibition of growth in in-house turbidity assays.

Results: Following a 30-minute incubation in PBS, D. radiodurans was detected at a limit of 10⁵ bacteria/ml. No interference was observed with any of the other bacteria tested. By increasing the incubation time in broth, the limit of detection increased to 10⁶ bacteria/ml at 24 hours, 10⁷ bacteria/ml at 48 hours, and 10⁸ bacteria/ml following 72 hours. When dilutions of D. radiodurans were prepared in the presence of Cefazolin, the limit of detection (LoD) decreased as the antibiotic concentration

S264

Clinical Chemistry, Vol. 63, No. 10, Supplement, October 2017
increased: with 0.08 μg/ml Cefazolin, the LoD was 10^6 bacteria/ml; with 0.8 μg/ml Cefazolin, the LoD was 10^5 bacteria/ml; and with 8 μg/ml Cefazolin, the LoD was 10^4 bacteria/ml; following 72-hour incubation.

Conclusion: This novel assay allows for the simultaneous identification of *D. radiodurans* and determination of antibiotic susceptibility in as little as 72 hours.

Evaluation of the Abbott Alinity Clinical Chemistry and Immunoassay Systems

S. Busse, J. Perl, J. Lotz, K. J. Lackner, J. L. Rogers, G. J. Germer

1University Medical Center Mainz, Mainz, Germany, 2Abbott Diagnostics, Abbott Park, IL

Background. To evaluate the performance of the newly developed Alinity clinical chemistry (CC) and immunoassay (IA) systems in an independent laboratory and compare it to the performance of the respective Architect systems.

Methods. For CC performance AST, ALT, calcium, and total protein were analyzed. For IA qualitative and quantitative HBsAg-Assays, anti-HCV, combined HIV antigen and antibody (HIV-Combo), HTLV-I/II, and syphilis were analyzed. For all linearity and precision tests control material was used.

Results. For all four CC assays linearity of the Alinity results was excellent with coefficients > 0.999 over a broad concentration range. Slopes of the regression lines were between 1.00 and 1.04. Within day, between day, and total %CV was always <1.8% with the exception of the low level of ALT which had a between day %CV of 2.6% and a total %CV of 3.56%. Analytical precision of the IA are listed in the table.

<table>
<thead>
<tr>
<th>Immunoassay precision</th>
<th>Assay</th>
<th>Level</th>
<th>Within day %CV</th>
<th>Total %CV (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg (qual)</td>
<td>neg</td>
<td>8.32</td>
<td>10.56 (7.48-17.95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pos</td>
<td>1.84</td>
<td>1.98 (1.51-2.89)</td>
<td></td>
</tr>
<tr>
<td>HBsAg (qual - confirm)</td>
<td>pos</td>
<td>2.40</td>
<td>2.68 (2.04-3.93)</td>
<td></td>
</tr>
<tr>
<td>HBsAg (quant)</td>
<td>neg</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pos*</td>
<td>2.89</td>
<td>2.77 (2.15-3.88)</td>
<td></td>
</tr>
<tr>
<td>Anti-HCV</td>
<td>neg</td>
<td>3.14</td>
<td>3.71 (2.73-5.78)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pos*</td>
<td>2.55</td>
<td>2.85 (2.17-4.38)</td>
<td></td>
</tr>
<tr>
<td>HIV-Combo</td>
<td>neg</td>
<td>8.02</td>
<td>8.12 (6.33-11.34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pos</td>
<td>7.53</td>
<td>8.24 (6.31-11.90)</td>
<td></td>
</tr>
<tr>
<td>Syphilis</td>
<td>neg</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pos</td>
<td>1.25</td>
<td>1.42 (1.07-2.10)</td>
<td></td>
</tr>
</tbody>
</table>

*) If more than one positive level was tested, the lowest positive level is shown.

Biologic drug monitoring assays

J. Fecteau, L. Ruff, D. Uzri, B. Messmer

Abreos Biosciences, Inc., San Diego, CA

Background: Monoclonal antibodies (mAbs) are among the most rapidly growing class of pharmaceuticals and the most expensive. Pharmacokinetic (PK) variability among patients treated with these drugs is significant, typically varying by over two orders of magnitude, and blood drug levels correlate with clinical efficacy in most cases. This variation can be compounded in combination therapies or by formation of anti-drug antibodies during prolonged treatment. Nonetheless, therapeutic dose monitoring is not routine practice partly due to the lack of robust clinical laboratory or point-of-care (POC) assay solutions.

Methods: Peptide mimetic ligands are an attractive option for immunoassay reagents because they are stable, highly selective, and easier to develop and manufacture than natural ligands or anti-idiotype antibodies. We have developed mimetope peptides, termed Veritopes, against a broad range of therapeutic mAbs, and these peptides are ideal for capture and quantification of free and active mAbs in biological samples such as human serum. We have implemented these peptides in ELISA format, where they are used as a surrogate ligand to capture the drug. We have developed Veritopes for several widely used mAb drugs, including natalizumab, vedolizumab, rituximab, trastuzumab, pemetrexed, and pembrolizumab. Veritope ELISAs can be commercialized as laboratory developed tests (LDTs). Alternatively, Veritopes can be integrated into lateral flow assays for POC dose monitoring applications such as patient stratification during clinical trials or personalized dosing of marketed drugs.

Conclusion: When used as a capture reagent in ELISA, these mimetope peptides display sufficient sensitivity, specificity, and linearity across the requisite concentration ranges relevant for most mAb PK studies. In all cases, the selected peptides effectively bind only the intended target in the presence of circulating human IgG and do not crossreact with other mAbs. The natalizumab ELISA was statistically validated in a CLIA setting in preparation for future marketing as an LDT. The lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) for natalizumab in undiluted serum were determined to be 2.0ug/mL and 16.0ug/mL, respectively. These data were obtained from 5 independent runs, where each sample was run in triplicate. The Limit of Blank (LoB) and Limit of Detection (LoD) were 0.6ug/mL and 0.8ug/mL, respectively. Intra- and inter-assay accuracy and precision were determined using spike and recovery experiments with three concentrations of natalizumab covering the dynamic range and analyzed in five independent runs either in triplicate or quintuplicate. Analyte recovery was calculated for each concentration as a measure of accuracy and was consistently between 80% and 120% of nominal concentrations (Calibrated value/Nominal Value*100). Intra- and inter-assay precision were calculated using the same samples, and the coefficients of variation (%CV) were below 15% for all concentrations tested (SD/mean*100).

Results and Conclusion: Veritopes are robust reagents adaptable to a variety of immunoassay formats suitable for both laboratory and POC measurements of mAb levels in biological samples such as human serum. Direct monitoring of mAb drug levels in patients will enable precise, personalized dosing that can improve outcomes, minimize side effects, and reduce treatment costs.

Report on a European and two Korean population clinical trials for multiplex detection of HIV and HCV

S. Kim, C. C. Ostge, Y. Lee, Y. Ki. PCL Inc., Seoul, Korea, Republic of

Background: A novel, multiplex detection system for infectious diseases is based upon standard ELISA protocols, with the main difference that the process is conducted in an actual 3-D environment. The sol-gel nanoporous capturing technology represents a powerful approach where the sol-gel matrix constrains the motion of the encapsulated biomolecules (proteins, peptides, chemicals, antibodies, oligonucleotides, etc.) without physical adsorption or any modification. This technology can be applied to multiplex immunoassay platform because several disease biomarkers can be immobilized and tested concomitantly in a single well.

Methods: The Hi3-I Multiplex HIV1/2 and HCV antibody detection kit, a two-step fluorescence-based immunoassay, is designed to detect antibodies against HCV protein (Core, NS3, NS4, NS5) and HIV 1/2/O type protein, respectively, in human serum or plasma. Sol-gel spots are arrayed on the bottom of a microtiter plate wells, and antigens from HIV1/2/O and HCV are encapsulated within two sets of spots in each well. HIV and HCV antibodies in serum or plasma bind to antigens in the sol-gel spots and form antigen-antibody-fluorescently labeled secondary antibody complexes. Following a wash cycle, fluorescein-labeled secondary antibodies against human IgG and IgM are added to the wells. After washing to remove samples and unbound fluorescently labeled antibodies, the plate is scanned in a fluorescence scanner. In the absence of HIV and HCV antibodies, no fluorescence is detected. The clinical trial for this system is performed according to CTS guideline (Guidance on the In Vitro Diagnostic Medical Devices Directive 98/79/EC, Commission Decision of 3 February 2009) and KDFA guidelines (Release No.BI-2012-5-005).
Results: In the Clinical trial at the Korea University Guro Hospital in Korea, the results suggest that the sensitivity of both the HIV-Ab and HCV-Ab assays using Hi3-1 kit was 100.00% [100%, n=353; including 102 HIV Korean positive specimens, 150 HIV 1, 100 HIV 2 and 1 HIV 0 subtypes, and n=431 HCV Korean positive specimens] and the concordance of the corresponding HIV Ab and HCV Ab assays between the Hi3-1 kit and the Architect systems for negative specimens was 99.96% (n=4,479 negative specimens for HIV) and 99.76% (n=4,150 negative specimens for HCV), respectively.

In the Clinical trial at the Seoul St. Mary’s Hospital in Korea, the result showed a highest sensitivity (100%, n = 500 HIV-Positive specimens and n = 400 HCV-Positive) and specificity (100% for HIV 1/2 and 99.84% for HCV, n = 4,306 negative specimens) by using the kit, which simultaneously screens for the presence of HIV/12 and HCV antibodies.

In the clinical trial at CERBA in France, a total of 3400 clinical negative samples (collected from the CERBA Specimen Service of France) were tested for HIV/12 and HCV using the Hi3-1 kit. Concordance of the corresponding HIV Ab and HCV-Ab assays between the Hi3-1 kit and Architect systems for panel 1 was 99.97% and 99.82%, respectively.

Conclusion: Given that the new technology has sensitivity and specificity equivalent to the commercially available CLIA tests, the sol-gel based microarray has the potential to be used as a high-throughput screening tool for simultaneous detection of HCV and HCV in blood banks.

B-439 Advanced Centrifugal Microfluidic Platform for the Automation of Clinical Assays

D. Brassard1, D. Clime’, J. Daoud1, M. Geissler1, L. Malic1, D. Charlebois1, T. Veres’. National Research Council, Boucherville, QC, Canada, 2Canadian Space Agency, Saint-Hubert, QC, Canada

Background: Centrifugal microfluidics offers the interesting prospect to automate the liquid handling steps required by clinical assays. Unfortunately, traditional centrifugal microfluidics offers only limited liquid control capabilities, which is problematic for the integration of complex assays. Herein, we report the development of an automated protein extraction assay from whole blood using a novel centrifugal microfluidic platform where advanced liquid control is achieved through a combination of centrifugal forces and active pneumatic pumping.

Methods: We fabricated a centrifugal microfluidic platform capable of applying air pressure pulses (0-5 psi) to the ports of microfluidic devices while the platform is rotating at high speed (1000 rpm), providing precise control to automate on-chip liquid handling steps (Fig. 1a and b). Microfluidic devices were fabricated from low-cost thermoplastic materials and contained no active components such as valves or electrodes (Fig 1c). Capture of target proteins is performed on 100 μm silica beads functionalized through carbodiimide chemistry and conjugated with antibodies for TNF-α, PTH or ALP.

Results: Extraction of target proteins from whole blood is shown here as an example of an assay that can be automated with the developed technology. For this assay, the following steps were successfully automated: metering and transfer of a density gradient medium, transfer and metering of a blood sample from an external tube (600 μl), blood fractionation, plasma extraction, active back-and-forth displacement of plasma through a bead-bed containing functionalized silica beads, three washes, elution, and transfer of eluted sample to an external vial. The automated assay demonstrated significantly higher protein extraction efficiency (about 80%) and lower variance compared with assays performed manually using standard protocols (Fig 1d).

Conclusion: Using the developed centrifugal microfluidics platform, a multistep protein extraction assay was successfully automated using passive thermoplastic microfluidic devices, which highlights the potential of the technology for clinical applications.

B-440 A Comparison of the New Beckman Coulter DxC 700 AU Clinical Chemistry System to the UniCel DxC 800 Synchron Clinical System

B. Godfrey, K. Breasley, D. FitzGerald. Beckman Coulter, Co. Clare, Ireland

Background: The Beckman Coulter DxC 700 AU analyser is the latest clinical chemistry system from Beckman Coulter. It is a fully automated, random access analyzer, designed for medium to high throughput laboratories, with a throughput of 1200 tests/hour including ion selective electrodes. The purpose of this study was to compare the recovery of patient samples on the new DxC 700 AU with the UniCel DxC 800 Synchron Clinical Systems for a selection of routine assays.

B-438 Process Qualification for Production and Purification of OC125 Antibody in Cell Culture

Background: Production of quality monoclonal antibody (mAb)suitable for serological diagnosis and compliant with ISO standards and Regulatory Regulations, is key to IVD industry. Ascites generation and bioreactor systems represent in vivo and in vitro approaches for mAb production, respectively. Bioreactor systems have some advantages over ascites generation in preventing the introduction of endogenous contaminating protein and reducing variability in antibody generation (Marx 1995; Jackson 1996; Bruce 2002). This study was to qualify the production and purification of OC125 antibody, a mAb against cancer biomarker OC125 defined antigen, produced in a bioreactor system. Methods: Three lots of an OC125 proprietary mouse hybridoma cell line were cultured in the Applikon EZ-Control bioreactor containing serum-free media for at least 70 days, with at least 14 harvests. The supernatants were purified on a mAb SelectSuRe column, concentrated with a Pellicon unit and polished with SP Sepharose HP column. Samples from each lot were assessed for functionality by incorporating the antibody on a mainstay hybridoma cells were collected prior to culture and at the end of 90 day culture to (IEF), Immunoelectrophoresis (IEP) and SDS-PAGE electrophoresis. Moreover, the antibody samples were coated on the solid phase of a mainstay platform, and characterized with the HPLC, isoelectric focusing electrophoresis for functionality by incorporating the antibody on a mainstay hybridoma cells were collected prior to culture and at the end of 90 day culture to
Methods: To compare the Beckman Coulter Dx® 700 AU and the UniCel Dx® 800 Synchrone Clinical Systems, several Beckman Coulter assays were selected for evaluation that covered serum and urine sample types and a range of assay methodologies. These systems were compared using patient serum or urine samples. Samples were run in duplicate and the sample means compared using Deming regression.

Results: All Dx® 700 AU assays showed excellent correlation with the UniCel Dx® 800 Synchrone Clinical System. The Deming regression statistics parameters for selected assays are summarised in the table below.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Units</th>
<th>N</th>
<th>Slope (95% CI)</th>
<th>Intercept (95% CI)</th>
<th>R</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>mg/dL</td>
<td>130</td>
<td>0.930 (0.928 to 0.932)</td>
<td>-2.7 (-3.2 to -2.2)</td>
<td>1.000</td>
<td>12.5 to 760.4</td>
</tr>
<tr>
<td>Creatinine</td>
<td>mg/dL</td>
<td>122</td>
<td>0.966 (0.962 to 0.970)</td>
<td>0.05 (0.04 to 0.07)</td>
<td>1.000</td>
<td>0.38 to 23.54</td>
</tr>
<tr>
<td>BUN</td>
<td>mg/dL</td>
<td>98</td>
<td>0.990 (0.987 to 0.993)</td>
<td>-0.4 (-0.5 to -0.3)</td>
<td>1.000</td>
<td>11.0 to 123.8</td>
</tr>
<tr>
<td>Albumin</td>
<td>g/dL</td>
<td>121</td>
<td>0.935 (0.916 to 0.954)</td>
<td>0.36 (0.28 to 0.44)</td>
<td>0.988</td>
<td>1.56 to 3.22</td>
</tr>
<tr>
<td>Total Protein</td>
<td>g/dL</td>
<td>134</td>
<td>1.022 (1.010 to 1.033)</td>
<td>0.1 (0.00 to 0.1)</td>
<td>0.996</td>
<td>3.4 to 10.2</td>
</tr>
<tr>
<td>ALP</td>
<td>U/L</td>
<td>110</td>
<td>1.065 (1.059 to 1.071)</td>
<td>0.50 (-0.2 to 1.2)</td>
<td>0.999</td>
<td>24.8 to 71.6</td>
</tr>
<tr>
<td>AST</td>
<td>U/L</td>
<td>118</td>
<td>0.913 (0.908 to 0.918)</td>
<td>-3.0 (-3.2 to -2.8)</td>
<td>0.999</td>
<td>8.2 to 360.2</td>
</tr>
<tr>
<td>GGT</td>
<td>U/L</td>
<td>73</td>
<td>1.181 (1.175 to 1.187)</td>
<td>-1.2 (-1.6 to -0.8)</td>
<td>1.000</td>
<td>6.2 to 459.9</td>
</tr>
<tr>
<td>IgG</td>
<td>mg/dL</td>
<td>120</td>
<td>0.895 (0.886 to 0.904)</td>
<td>0.30 (0.21 to 0.40)</td>
<td>0.997</td>
<td>174.9 to 245.3</td>
</tr>
<tr>
<td>Urinary Albumin</td>
<td>mg/dL</td>
<td>77</td>
<td>1.023 (1.010 to 1.036)</td>
<td>-0.2 (-0.4 to 0.0)</td>
<td>0.997</td>
<td>1.6 to 29.4</td>
</tr>
</tbody>
</table>

Conclusion: The results of the study demonstrate that the new Beckman Coulter Dx® 700 AU analyzer has comparable performance to the UniCel Dx® 800 Synchrone Clinical System.

Beckman Coulter, the stylized logo and the Beckman Coulter product and service names mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries.
reproducibility representing 3 different spike-in levels. To assess linearity, dilutions were made of spike-in samples using the plasma from the “recipient” to dilute the proportion of cDNA present from the “donor”. Plasma was extracted using Qiagen’s Circulating Nucleic Acid kit. After extraction, samples were quantified for total cDNA using a qPCR method while dd-cDNA was calculated using the AlloSure workflow.

Results: Total recovery of cDNA as measured by qPCR ranged from 11 to 34ng per 5ml of plasma which is consistent with ranges expected from healthy volunteers. Intra-operator variability for total cDNA ranged from 1.5% to 11% CV. The inter-operator variability ranged from 9% to 17%. When dd-cDNA was measured, the intra-operator variability ranged from 5.6% to 7.8% and the Inter-operator CVs ranged from 1.7% to 12.8%, both within the established variability of the assay. Linearity tests showed the assay performed as expected; the measured dd-cDNA was consistent with expected values based on dilution.

Conclusions: The recovery of cDNA was reproducible within one operator and between operators. The cDNA from the donor is consistently recovered at different spike-in amounts indicating that the extraction method is appropriate for use with AlloSure where low levels of donor cDNA require reproducible and robust recovery.

Standardized Reagent Formulation and Data-driven QC Criteria Ensure Efficient and Consistent Delivery of Plasma Cell-free DNA Results for Organ Transplant Rejection

P. Sankey, C. Christopherson, L. Eubank, C. Chan, K. Sterling, F. Lao, M. Velez, C. Garcia, R. Woodward, M. Nelles, S. Scott. CareDx, Brisbane, CA

Background: Workflows for complex molecular diagnostic testing often require multiple steps and formulation of specialized reagents. High quality lots of primers are used in AlloSure testing and accurate and consistent results for organ transplant patients. The metrics can be used to reject lots of primers that do not meet specifications at specific requirements needed using data from multiple runs over long periods of time.

Conclusions: Performance and the QC metric for primer lots was defined by the statistical analysis of primer sets used successfully in AlloSure testing to date passed this QC. We identified key reagents in the AlloSure workflow that would benefit from transfer to our reagent manufacturing group for formulation. Formulation of these reagents under a GMP compliant lab ensures standardized and validated processes, QC prior to release for use in patient testing, and reduces variability introduced when reagents are prepared at the time of testing. The transfer of these key reagents to our manufacturing group required defining independent QC processes and acceptance criteria in addition to training staff and validating the successful transfer of the formulation procedures.

Objectives: The purpose of this study was to establish formulation procedures and defined QC criteria for key reagents used in a cell-free DNA next generation sequencing assay.

Methods: The preparation of 266 AlloSure targeted amplification primers was identified as a key component that warrants transfer to our manufacturing group. Transfer of the primer preparation, both as a pool used in the pre-amp step and the 48 different multiplexes used in the secondary amplification, included creating a training plan, SOPs, batch records, standardized lot labeling, and production of 3 independent lots before the official transfer was complete. QC criteria were developed by testing the NIST NA12878 reference standard in the AlloSure NGS workflow over the course of 1 year. The criteria used for passing lots of primers were set using number of SNPs that pass QC as determined by the same AlloSure QC algorithm. Statistical analysis of the number of AlloSure SNPs successfully sequenced was performed using binomial quantile estimation. The data from this analysis were used to define the QC testing criteria for the formulated primer pools. Additional QC criteria which requires obtaining the expected dd-cDNA results from spike-in controls is used for CLIA lab acceptance of the materials.

Results: The historical data were used to estimate the binomial probability of an individual SNP passing QC using the mean as calculated from all of the runs. The resulting minimum 1% quantile is 230 SNPs passing QC. Based on this cut-off, 99% of primer sets used successfully in AlloSure testing to date passed this QC. The absorption measurements were performed using the Spectra Max Plus Microplate Reader (Molecular Devices).

Conclusions: The recovery of cell-free DNA as measured by qPCR ranged from 11 to 34ng per 5ml of plasma which is consistent with ranges expected from healthy volunteers. Intra-operator variability for total cDNA ranged from 1.5% to 11% CV. The inter-operator variability ranged from 9% to 17%. When dd-cDNA was measured, the intra-operator variability ranged from 5.6% to 7.8% and the Inter-operator CVs ranged from 1.7% to 12.8%, both within the established variability of the assay. Linearity tests showed the assay performed as expected; the measured dd-cDNA was consistent with expected values based on dilution.

Conclusions: The recovery of cDNA was reproducible within one operator and between operators. The cDNA from the donor is consistently recovered at different spike-in amounts indicating that the extraction method is appropriate for use with AlloSure where low levels of donor cDNA require reproducible and robust recovery.

Improving the Sensitivity of the Coomassie Brilliant Blue (CBB) Test

F. Vitzthum1, H. Schwarz2. Siemens Healthineers, Tarrytown, NY, Siemens Healthineers, Marburg, Germany

Background: Sensitive and accurate protein quantitation is important for the manufacture of immunoassays. The CBB test is widely used as a sensitive and rapid method. After its introduction, several improvements of the test have been reported, including the use of the ratio of the absorption values at 595 nm and 450 nm instead of measuring at ~590 nm only. Increasing the linearity of a test improves accuracy when linear regression is used for value assignment. Further increasing the sensitivity allows for broader and more flexible application. Since measurement at different wavelengths captures differently protonated forms of the dye, we set out to determine whether altering the pH-value of the reagent could further improve linearity or sensitivity of the assay.

Methods: We determined the impact of different pH-values of Bradford reagent (Bio-Rad) on absorption values and combinations at different wavelengths. Slopes and correlation coefficients (r²) of bovine serum albumin (Sigma) standard curves ranging from 10 to 100 µg/mL were used as indicators for sensitivity and linearity. 60 µL of sample was placed in a well of PS standard F-bottom microplates (Greiner Bio-One) followed by the addition of 240 µL of reagent that had been pH-adjusted. The absorption measurements were performed using the Spectra Max Plus Microplate Reader (Molecular Devices).

Results: A pH-value of ~0.8 for the original reagent was confirmed to be the optimum for the measurement at 595 nm. However, the highest slope was observed at a pH-value of ~1.0 when using the ratio 595/470. The slope was ~4.7-fold higher compared to the absorption measurement at 595 nm at a pH-value of ~0.8, and the slope was ~1.6-fold higher compared to the absorption ratio 595/470 at the pH-value of ~0.8. r² values in the pH-range from 0.5 to 1.0 were comparable (0.9824 and 0.9693 for the 595/470 ratio and 595 nm, respectively).

Conclusion: When using the 595/470 ratio, the slope of the CBB assay can be significantly increased by using a pH-value of ~1 for the reagent. Linearity is not markedly changed, moving the original pH-value of the reagent from about 0.8 to 1. Thus, a reagent pH-value of ~1 represents a simple means to improve the sensitivity of CBB testing, maintaining linearity and consequently accuracy of testing throughout the measuring range.

References:

Evaluation of endogenous amino acids as preanalytical controls for blood samples

J. Hill, R. Mageb, R. Taylor, J. Hill. Spot On Sciences, Austin, TX

Background: Comparison of analyte concentrations between blood sample types including wet and dried plasma/serum and capillary and venous whole blood is difficult. A pre-analytical, endogenous standard would allow normalisation between blood sample types to control for sample quality and volume and would allow more precise quantitation and quality analysis. The objective of this study was to determine the feasibility for use of amino acid (AA) levels as a suitable pre-analytical standard (PS) for dried and wet blood samples.

Methods: The free AA concentrations in wet and dried plasma and whole blood for 12 AA was measured for nine healthy donors (ages 29 to 60) by LC-MS/MS. Fasting (early morning) and fed (one hour post lunch) AA levels were determined for three donors on three separate days, using whole blood collected with HemaSpot™. HF devices by finger stick. AA stability over time (1, 7, 30, 60 and 90 days) and temperature (-20, 22, 37 and 45 °C) was determined for dried whole blood from three separate donors.

Results: Levels of five AA (Val, Thr, Ile, Leu, Phe) showed strong correlation (~11% CV) between nine donors for four sample types: wet and dried plasma, and wet and dried whole blood. Minimal differences in AA levels were observed between fasting and fed state. Levels of Phe, Ile, Pro, Val, Leu, Tyr and Thr were stable (~10% loss) as dried blood up to 90 days at temperatures of ~20 to 45 °C, while Gly, Ser and Thr were not stable over time.

Conclusions: Several AA including Val, Ile, Leu and Phe show promise for use as a pre-analytical standard for dried and wet plasma and whole blood samples.