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FROM THE MIND OF THE CHAIR 

 

Greetings everyone!  
Now that 2024 has 
started, I hope the 
beginning of the new 
year has greeted you 
with hope and health.  
Consistent with our 
mission to provide 
educational session for 
our membership, the 
PMF leadership group 
developed and 

submitted several proposals for the 2024 ADLM 
Annual Meeting.  Along with a few other division-
sponsored proposals, we hope to have several 
specific PMF-related sessions for you to attend. 
For those of you planning to submit a poster, 
please note the deadline for submission is 
February 15, 2024, at 5 pm US Eastern time. 
 
Consistent with past newsletter issues, the letter 
“M” leads our topic of discussion. In this 
newsletter you will find an interesting and 
informative article on “M is for Machine Learning” 
authored by Nick Spies, MD of Washington 
University in St. Louis.  Other content includes 
Excerpts from the Literature “Cotton ball urine 
collection: Is the juice worth the squeeze?” 
Authored by Stephen Roper, PhD.  And last, but 
not least, we feature our Interview with a 
Distinguished Colleague, our 2023 awardee for 
Outstanding Contributions to Pediatric and 
Maternal-Fetal Clinical Chemistry, Alison 
Woodworth, PhD. 
 
As this year continues, we have plans to provide 
educational opportunities (webinars) for our 
membership as well as preparing our division for 
upcoming changes to our organizational 
structure.  Please feel free to contact me with 
any questions or comments regarding the PMF 
division.  Enjoy 2024!  
 

Sincerely, 

 

Stanley F Lo, PhD 

Chair, AACC PMF Division 
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What is Machine Learning?  
 
Machine Learning (ML) refers to the discipline of 
building algorithms that can improve their 
performance on human tasks without explicit 
instruction (1). These algorithms and the tasks 
for which they are trained come in many forms 
and take many names, but their potential to 
impact the way laboratory medicine is performed 
– for better or worse – is becoming undeniable. 
We will take a brief foray into the world of AI and 
ML to discuss how these algorithms are built, 
validated, and implemented effectively and 
responsibly.  
 
Fundamental Concepts and Key Terms 
 
All machine learning applications should begin 
by defining the task at hand. While recent 
breakthroughs in generative AI have broadened 
the scope of machine learning tasks, most use 
cases within the laboratory still revolve around 
making discrete predictions.  
 
Typical ML applications include regression 
(predicting a numerical outcome), and 
classification (predicting a label). If the dataset 
used to train the model included the labels being 
predicted, then it is referred to as supervised 
learning. In contrast, if no labels are provided, 

the task is unsupervised. The fidelity of the data 
and labels used to train the models is the single 
most crucial aspect of the entire endeavor. 
However, curating a pristine input dataset that is 
completely labeled by a veritable gold standard 
is difficult, if not impossible. This has fueled 
research in approaches that can use some 
labels (semi-supervised) or make their own 
labels (self-supervised).  
 
Assessing Model Performance 
 
As laboratorians, we are no strangers to critical 
appraisal of assays. While many of these skills 
transfer quite nicely, there are idiosyncrasies 
that bear mentioning. First is vocabulary. Where 
we would refer to sensitivity, positive predictive 
value, and measurement error, ML parlance 
uses recall, precision, and loss. Next, when 
establishing a threshold, it is crucial that we 
interpret performance in the context of the 
problem being addressed. While it is common to 
compare sensitivity and specificity via a receiver 
operating characteristic (ROC) curve, because 
many ML solutions aim to detect rare events, 
they often prefer precision-recall (PR) curves 
and metrics such as the F1 score or the 
Matthews Correlation Coefficient (MCC).  
 
These metrics provide more relevant 
representations of real-world performance when 
classes are imbalanced, similar to the trade-off 
between reporting sensitivity and specificity 
versus positive and negative predictive value. 
This will be an important distinction when 
evaluating model performance across 
populations where disease prevalence diverges 
from that exhibited in the training dataset. For 
example, an algorithm for the detection of 
myelodysplastic syndrome (MDS) that 
demonstrates 99% sensitivity and specificity 
may provide stellar performance in an adult 
hospital setting, but next-to-no clinical utility in 
pediatric or obstetric settings, where the 
incidence of MDS is much lower. Conversely, 
algorithms for preanalytical errors such as 
hemolysis or IV fluid contamination may provide 
much more value in the pediatric hospital, where 
these errors are unfortunately much more 
prevalent, and the relative cost of repeat 
phlebotomy is greater. 
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Validating ML Models: Common Pitfalls 
 
Equally important as choosing the right 
performance metrics, is applying them to the 
right data sets. During the development process, 
it is common to partition input data into a set for 
training the model, and a set for testing its 
performance. This partitioning comes in many 
flavors (cross-validation, bootstrapping, leave-
one-out, etc.), and is commonly done as part of 
the internal validation of the model. However, 
achieving stellar results in this internal validation 
phase is no guarantee that the model will 
maintain that performance when applied to the 
real world.  
 
A major pitfall in ML design is overfitting – when 
a model detects spurious patterns in the training 
data that are not correlated with real-world 
outcomes. One common cause, information 
leakage, occurs when the use of privileged 
information unavailable at the time of inference 
is used to aid in predictions (e.g. a model to 
predict diabetes that inadvertently has access to 
current hemoglobin A1c). While extreme cases 
like this are often trivial to spot, others are more 
insidious, such as calculating features using the 
full data set instead of the training set or having 
the same patient present in both the training and 
testing sets.  
 
Robust model validation is essential for safe and 
effective implementation of ML algorithms, 
especially from the perspective of a laboratorian 
overseeing maternal-fetal or pediatric testing. 
Because data is such a valuable resource, and 
the relative abundance of laboratory data is 
much greater for non-pregnant adults, it will likely 
be commonplace for us to need to validate 
algorithms that were trained on these adults in 
our local populations. Familiarizing ourselves 
with some common causes of generalizability 
failures will help us feel more comfortable 
performing these validations, without having to 
wait for pediatric- or obstetric-specific models to 
be made available. 
 
MLOps: Deploying Models to Production 
 

Given all the hype, it would be fair to wonder why 
the vast majority of the models you have read 
about in newspapers and journals have not 
translated into tangible impacts in patient care. If 
we were to summarize the root causes of 
discrepancy in one word, it would be MLOps.  
 
A portmanteau of machine learning and 
development operations, MLOps refers to all the 
engineering, information technology, 
governance, and implementation science that 
goes into taking a model off a researcher’s 
laptop and deploying it into the live clinical 
systems (often called a production environment). 
While the full breadth of MLOps is beyond the 
scope of this article, it behooves us to explore a 
few key questions; how do we act on the model’s 
predictions, how do we ensure their continued 
accuracy over time, and what can we do to 
explain them?  
 
Considerations such as whether the machine 
learning predictions should have a “human-in-
the-loop” or be integrated seamlessly into an 
automated workflow, what extent to which we 
must ensure that the model’s performance is not 
deteriorating over time, and how we can validate 
and implement real-time explanations of model 
predictions on a case-by-case basis will require 
extensive exploration for each model. 
Additionally, current laboratory information 
systems lack the capacity and interoperability to 
allow for “plug-and-play” implementation. 
Integrating a validated model within the live 
clinical workflow to provide real-time predictions 
is currently a Herculean task feasible only for 
laboratories with a wealth of informatics 
expertise and IT resources (2). 
 
The optimal way to approach these and other 
MLOps considerations remains an area of active 
research in the ML community as a whole, 
across both adult and pediatric populations. 
 
Responsible AI and Algorithmic Fairness 
 
Up until now, we have described performance 
assessment as it pertains to entire groups, such 
as the test set or validation set, without 
consideration of the relevant subpopulations 
within these groups. Failing to do so puts us at 
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risk of contributing to inequity, often with 
catastrophic consequences (3).  
 
One does not have to search long to find claims 
of racist, sexist, and otherwise biased algorithms 
in the real world. Placing the blame on the 
algorithm may stem from an inherent desire for 
us to anthropomorphize artificial intelligence but 
is inherently a bit misguided. It may seem 
optimistic to state that algorithms are not actually 
as racist or sexist as some claim, but the reality 
is much more bleak. These algorithms are 
reflecting the patterns inherent in the data and 
labels used to train them. If a model is built to 
predict whether an employee is “CEO material”, 
and trained using historical examples of CEOs, 
we should not be surprised to find that it prefers 
older, white men. While ML solutions offer 
immense potential to improve the operational 
and clinical dilemmas facing the modern 
laboratory, they also present an equally powerful 
mechanism by which existing disparities can 
become even more entrenched and amplified (4).  
 
These considerations ring especially true in 
pediatric and maternal-fetal medicine, where 
children and pregnant patients are commonly 
excluded from training datasets, resulting in 
algorithms that may not generalize to these 
populations. Shifting the framing of the 
conversation from biased algorithms to biased 
datasets reminds us of our responsibility to 
explore and address these issues before they 
can cause harm through an overly hasty 
implementation. Fortunately, the topic of 
algorithmic fairness in laboratory medicine has 

received a substantial degree of attention and 
thought recently (4), providing us with useful 
tools and frameworks by which to translate these 
principles into practice. 
 
Conclusion 
 
ML represents the potential to revolutionize the 
practice of laboratory medicine, but it is not 
without its drawbacks and dangers. As these 
solutions become commonplace in literature and 
laboratories alike, we must develop the skills to 
appraise, validate, implement, and monitor them 
in a safe, responsible, and equitable fashion.   
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Cotton ball urine collection: Is the juice worth 
the squeeze? 
 
Collecting urine from infants is challenging. 
Speaking with experience as a father, I can 
confirm that young children rarely urinate when 
or where you want them to. Catheterization and 
suprapubic aspiration are options but may be 
unnecessarily invasive depending on the 
reason(s) for testing.  Alternative urine collection 
techniques for infants include the use of 
adhesive bags placed around the genitals, 
however this method is imperfect; bags may leak, 
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adhesives can cause skin irritation, and [I am 
told] this approach does not always work well for 
females (1). Granted the broad utility of urine 
chemistry testing, there is a need to validate 
more practical collection methods for infants.  
 
The idea of using an absorbent medium to 
collect urine is not new. For more than 30 years, 
studies have investigated this practice for 
various tests (chemistries, microbiology, 
microscopy, etc) with mixed results (2, 3). The 
basic idea is that an absorbent material is placed 
in the front of an infant’s diaper. Once urination 
has occurred and the material is saturated, it is 
compressed to extract the specimen for 
laboratory testing.  Obvious limitations to this 
approach are lack of sterility, the possibility of 
contamination with feces and/or fibers from the 
absorbent material, and the inability to collect 
timed specimens.  However, many of these 
drawbacks also apply to adhesive bags and the 
relative simplicity of using an absorbent medium 
is attractive to healthcare staff and parents. 
 
The June 2022 issue of the Journal of Pediatrics 
features a contemporary, multi-site study 
investigating the use of cotton balls in diapers to 
obtain urine for routine chemistry testing (4). 
Thomas et al.  designed this study to assess 
several variables that could potentially influence 
urine chemistry results, including different 
brands of cotton balls and diapers, as well as 
various chemistry analyzers. The researchers 
began by generating 20 aliquots of a urine from 
a pool of residual specimens submitted for 
urinalysis. Each aliquot was divided across 6 
treatment groups and 1 no treatment control 
(reference specimen). The treatment groups 
covered various combinations of cotton balls 
(Curity and Centurion) and diapers (Huggies, 
Pampers, LUVs) used at the authors’ institutions, 
as well as a no diaper control. For the treatment 
groups, 5-10 cotton balls were placed in a diaper, 
saturated with approximately 20mL of urine, and 
covered with a ziplock bag. Following incubation 
at 37°C for 1 hour, urine was extracted by 
placing the cotton balls in a 20mL syringe and 
applying pressure with the plunger. Extracted 
urine was separated into aliquots and frozen. 
Specimens were shipped to 5 labs employing 
various chemistry analyzers (Ortho Vitros 4600, 

Beckman Coulter AU5822, Roche Cobas 6000, 
Abbott Architect c8000, and Siemens Dimension 
Vista 500) where sodium, potassium, creatinine, 
urea, calcium, magnesium, phosphorus, albumin, 
and total protein were measured. Data was 
analyzed, relative to the no treatment control, 
using regression analysis, Bland-Altman plots, 
and t-tests.  
 
Review of correlation and percent bias data did 
not suggest any brand-specific trend for the 
cotton balls or diapers included in this study. 
Analysis of individual analytes, however, did 
reveal several important differences related to 
the collection technique. For all treatment groups 
and the no diaper control, albumin and total 
protein measurement were found to have a 
substantial inverse negative bias when urine is 
soaked in cotton balls (range: -18%  to -53%). As 
well, an inverse positive bias was evident at the 
lower end of the concentration range for urine 
calcium on all chemistry analyzers. Sporadic 
mild to moderate differences in magnesium and 
potassium concentrations were also apparent on 
some instruments for select cotton ball and 
diaper combinations. Overall, the most 
consistent measurements between treatment 
and control groups were observed for sodium, 
urea, creatinine, and phosphorus.  
 
The study by Thomas et al. addresses an 
important, yet underappreciated challenge with 
pediatric specimen collection. The technique 
evaluated has the potential to simplify random 
urine collections from infants and improve 
clinical staff and parental satisfaction with lab 
services. Unfortunately, findings indicate that 
cotton ball urine collections can influence total 
protein, albumin, calcium, magnesium and 
potassium results. Given this information, labs 
wishing to accept cotton ball specimens for 
chemistries should evaluate this practice locally 
and proceed with caution. Outstanding 
questions include what, if any, effect does this 
collection method have on other tests commonly 
ordered in infants (urine drug test, for example). 
As well, it would be worthwhile to investigate the 
effect of delayed urine extraction from cotton 
balls to account for variability in the timepoint at 
which specimens are retrieved from diapers. 
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When you reflect upon your professional 

career in clinical chemistry, do you have any 

words of wisdom for those beginning their 

own career? 

 

I would encourage clinical chemists that are 

early in their careers to get involved!  ADLM has 

many opportunities to volunteer as do many 

other laboratory medicine based organizations.  I 

started at the local section level and had the 

pleasure of serving on many committees from 

the local to international levels.  These 

opportunities to interact with professional 

colleagues and friends are invaluable.  

Committee work helps to develop leadership 

skills and a portfolio for future career 

advancement.  Most importantly, developing 

connections with professional colleagues gives 

us a group of experts with whom we can share 

ideas, ask questions, and collaborate. 

 

You have recently made a slight change in 

your career path.  In making this change, 

what has been the most significant change to 

your practice as a clinical chemist?   

 

I did recently change my career path.  After 

spending 16 years as an academic clinical 

chemist, I have shifted gears and now direct a 

laboratory at a Clinical Research Organization.  

While the day-to-day work is quite similar, we 

perform laboratory testing to evaluate patients as 

a part of clinical trials.  This is another area 

where Clinical Chemists can thrive and show 

their scientific and clinical expertise!  The most 

significant change in my new job is that this is a 

global laboratory operation, so we are mindful of 

global harmonization and the intricacies of 

laboratory testing and associated regulatory 

oversight for large clinical trials around the world. 

It’s an exciting field and quite rewarding as we 

can help to identify new treatments for rare 

diseases and other complex health challenges! 
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In the area of clinical chemistry, what sort of 

changes are you expecting in the future? 

 

I think we will experience significant change in 

the field of clinical chemistry in the future.  I 

believe that AI and large data analytics will cause 

a shift in what we consider a diagnostic test.  

Complex diseases will now have better and more 

sensitive diagnostics by harnessing AI based 

laboratory testing algorithms.  In addition, 

COVID has completely shifted the landscape of 

laboratory testing.  I think we can expect the 

continuation of the trend to have lab testing 

performed at the point or care or even at home.  

The use of smart phones will allow physicians 

and patients to monitor complex diseases more 

closely from home.  Hospitals and clinics’ 

connectivity to EHRs and big data will all for 

easier remote patient monitoring.  Finally, I 

believe that we will see a shift from reactive to 

proactive diagnostics and the laboratory can 

lead the way!  Through access to large networks 

of patients through connected EHRs and 

Insurance databases, complex disease 

monitoring can be driven through AI and big data 

analysis.  Patient need never miss an 

appointment or necessary laboratory testing as 

algorithms can be created to reach out to 

patients and facilitate just in time laboratory 

testing.    
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