NOMINATING COMMITTEE SUBmits CANDIDATES

The Nominating Committee, consisting of Joseph Benotti, Louis B. Dotti, Max V. Friedman, Samuel Natelson, Miriam Reiner, Harry Sobotta, and Warren M. Sperry met in New York on November 11, 1951 and proposed the following slate of officers for the National Executive Committee to serve from July 1, 1952 to June 30, 1953.

President: Albert E. Sobel—New York, N.Y.
Vice-President: Hugh J. McDonald–Chicago, Ill.
National Secretary: Max M. Friedman—Queens, N.Y.
National Treasurer: Louis B. Dotti—New York, N.Y.
Members: Arthur Knudson—Albany, N.Y.
Marnelle H. Power—Rochester, Minn.
Harry Sobotta—New York, N.Y.
Arnold G. Ware—Los Angeles, Calif.

The procedure for elections is determined by Article IX of the Constitution: "The Nominating Committee shall deliver to the secretary of this Association a list of persons nominated by them for election as officers and members of the Executive Committee not later than sixty days before the Stated Annual Meeting of this Association. "The Secretary shall mail a letter ballot listing the nominees of the Nominating Committee to the voting members not later than 45 days before the stated Annual Meeting, such letter ballot including a notice that the names of persons other than the nominees may be written in. All ballots received up to but not later than fifteen days before the Stated Annual Meeting shall be counted."

All members in good standing as of January 1, 1952 are eligible to vote. The name of any member of the Associa-

DR. KNUSDON IN SIAM

Dr. Arthur Knudson, Associate Dean and Professor of Biochemistry at Albany Medical College, has been granted a year's leave of absence to teach in the two medical schools at Bangkok. Thailand (Siam), it was announced by Dean R. S. Cunningham of Albany Medical College.

Dr. Knudson's Bangkok assignment was the result of his earlier appointment as a Visiting Professor to the Washington University School of Medicine Faculty. In conjunction with the United States Economic Co-operation Administration, Washington University has developed a reciprocal teaching program between the Faculties of its School of Medicine and those of the two medical schools at Thailand.

Dr. and Mrs. Knudson left for Bangkok on June 25.

N.Y. ACADEMY OF SCIENCE

The New York Academy of Science appointed 99 new fellows from among its 5336 members. Forty-three of these newly appointed fellows, singled out for recognition of outstanding scientific achievements, were chemists and chemical engineers.

Dr. Otto Schales, Ochsner Clinic, New Orleans, La., member of the AACC, was in this group. Dr. Schales is Secretary-Treasurer of the Division of Biological Chemistry of the American Chemical Society.

COMPLETE STUDY URGED ON BOARD CERTIFICATION

The following is a chronological record of events and correspondence between the American Board of Clinical Chemistry and the American Association of Clinical Chemists, Inc. The publication of this record has been ordered by a resolution of the National Executive Committee of the AACC for the complete information of the membership.

1948 December 15, American Association of Clinical Chemists founded.

1949 April 19, American Association of Clinical Chemists incorporated in the State of New York.

1950 April 12, Dr. W.E. Harrison addressed the Association Annual Dinner-Meeting at Philadelphia, Pa., as Secretary of the Board of Clinical Chemistry.

April 18, American Board of Clinical Chemistry incorporated in the State of Delaware.

December 18, Chemical and Engineering News published the news release of the formation of the ABCC together with the by-laws concerning the qualifications for certification.

1951 January, The Certificate of Incorporation of the ABCC was transmitted to the Executive Committee of the American Association of Clinical Chemists. These papers together with the by-laws were published in the CLINICAL CHEMIST, Vol. 3 No. 1. The editorial statement made at that time invited comments from the membership.

(Continued on page 8)
ANNOUNCEMENT BY THE EXECUTIVE COMMITTEE

The Executive Committee of the American Association of Clinical Chemists, Inc., has reviewed the statement of the American Board of Clinical Chemistry published in this issue, explaining its principles and objectives. The statement together with the Board's action in making several changes in its By-Laws, dispenses of some doubts and questions concerning its requirements for certification and other matters. It also demonstrates that the Board is aware of its responsibilities for the development of clinical chemistry as a profession.

The Executive Committee therefore recinds its previous advice not to apply for certification and urges all clinical chemists to carefully study the exchange of statements printed in this issue. It is suggested that members form their own opinion on certification and act accordingly.

STATED ANNUAL MEETING

Dr. Saul Roseman, Bob's Robert Memorial Hospital, Chicago, Ill., is arranging a program of scientific papers on clinical chemistry to be given at the scientific session of the Stated Annual Meeting. The scientific session will be held jointly with the Division of Biological Chemistry of the American Chemical Society on April 3.

Dr. Margaret M. Kasel, Veterans Administration Center, Wood, Wis., heads a committee which is making the arrangements for the Annual Dinner, Stated Annual Meeting and other Association activities.

The Stated Annual Meeting will be held in conjunction with the American Chemical Society's 215th Meeting, at Milwaukee, Wis.

Our Record

We are a scientific organization. Our record, going into the fourth year, shows that we have advanced the scientific status of clinical chemistry.

We are a professional organization. Our activities, through our National Committee on Legislation and Local Section committees, contributed to the establishment of professional status to qualified non-medical scientists. These activities are only motivated in the public interest. Our personal interests lie only along these lines.

Contrary to what some misinformed individuals may think, we are not a pressure group. We would like to see harmonious relations established between the medical and non-medical scientists. We hope that our Association may be an instrument for this harmony.

We are a democratic organization, comprising, we believe, through the efforts of this newsletter, one of the best informed organization memberships.

Members are urged to study the complete correspondence between the American Board of Clinical Chemistry and our Association. All the facts are published in this issue.

Dear Sir:

I quite agree with the theme of the editorial published in November and I think it is very well expressed. However, I think that it represents only one facet of the entire picture.

The cost of medical care at present is beyond the reach of the average member of the middle class. The employment of trained chemists in hospital laboratories will add more fuel to the flames. The final criticism should be to the public (Dean A. Clark, M.D., New England Journal of Medicine, Nov. 1, 1951, p. 671). On the other hand, hospital administrators are by no means blameless. Most of them will admit that the laboratory makes a profit and that this money is used to reduce deficits elsewhere in the hospital. This gives the public a false impression of laboratory costs. If the laboratory could stand on its own feet, it could employ better trained people with only its current revenue.

I spent an entire month last summer visiting laboratories throughout the state of Florida and some of those problems were repeatedly brought home to me very vividly. I think your argument applies very directly to the larger hospitals but the solution for the smaller installations is not so clear. One suggestion received during the summer from a pathologist, would establish central laboratories in each community to which would automatically be sent all lab work except for the most urgent. This central lab could then afford to employ professionally trained chemists, bacteriologists, etc.

This is not to be taken as in any way a criticism of the argument for the employment of more and better trained clinical chemists. However, I feel that we will be better received if at the same time we show some appreciation of other phases of the problem and what we think can be done about it.

Miami, Fla. George T. Lewis, Ph.D.

QUIDNUNCS

WILLIAM H. GOLDWATER, formerly Assistant Professor of Biochemistry and Medicine, Tulane University Medical School, New Orleans, La., is now associated with the U.S. Naval Radiological Defense Laboratory, San Francisco, Calif.

THOMAS H. CONNOR was appointed Clinical Chemist at St. Joseph's Hospital, Providence, R.I.
THE SECRETARY REPORTS

With this issue of the newsletter the membership will receive a directory with the list of members as of January 1, 1952 and a ballot for the annual election of the Executive Committee and the Nominating Committee.

Perhaps the following notes may be of assistance to those who may not be clear as to the procedure in the election of national officers. According to Article V of the Constitution, "A Nominating Committee of seven, at least five of whom shall be full members of the Association, shall be elected to hold office for one year." This Nominating Committee is elected by the membership in a manner specified in Article IX. "The Secretary shall, not later than sixty days before the Stated Annual Meeting, mail to each voting member in good standing a list of all the voting members in good standing and the names of the institutions with which they are affiliated, together with a letter ballot on which the voting members may designate their choice for election to the Nominating Committee and the seven persons receiving the greatest number of votes shall constitute the Nominating Committee."

The Nominating Committee therefore receives a direct mandate from the membership to propose a slate of officers and members of the Executive Committee. After the personnel of the Nominating Committee is announced the members have at least six months in which to direct to this group their recommendations. And after the Nominating Committee proposes its slate, the voting member further enjoys the privilege of writing in the name of any other member as his choice.

This electoral process may appear cumbersome, but the end-result is an Executive Committee that has been selected by the choice of the membership. In each past election of the Association more than 60 per cent of the members have returned their ballots. Although a much greater percentage vote would be desirable, yet it must be reluctantly admitted that for a scientific society that conducts its ballot by mail a 60 per cent vote may be considered a good response.

Max M. Friedman, National Secretary

BECKMAN MODEL B SPECTROPHOTOMETER WITH FLAME ATTACHMENT

BECKMAN MODEL B SPECTROPHOTOMETER WITH FLAME ATTACHMENT provides a moderate priced precision instrument for rapid, routine analyses for both absorption and flame methods. Especially recommended for clinical determinations such as sodium and potassium. Average measurements require only 1 to 3 ml of solution such, for example, as undiluted serum. Can be used with either aqueous or non-aqueous solvents. The solution is drawn up through a straight palladium capillary and sprayed directly into the flame. No air supply is required.

Beckman Model B Class C prism Spectrophotometer (as described on pp 1098-1099 of our catalogue) range 320 to 1000 mμ and effective band width of 5 mμ, is provided with a high resolution monochromator which gives a continuous selection of wavelengths with resolving power sufficient to separate completely most of the easily excited emission lines, and which is free from scattered radiation, thereby minimizing interference.

Because of this high resolving power of the monochromator and of the high light output of the torch-type burner flame, sodium and potassium are easily detected when present in concentrations as low as 0.1 ppm. Calcium and magnesium can be detected in concentrations as low as 1 ppm and 10 ppm, respectively. Reproducibility of ±0.5% is obtainable for individual readings and of 0.2% for the average of several readings.

9087-C. Beckman Model B, with Flame Attachment, complete assembly as shown in illustration, with set of four 10 mm plastic cells and constant voltage transformer for operation from 115 volts, 60 cycles, a.c., and with atomizer burner assembly for acetylene-oxygen flame, with rigid mounting platform and regulators and gauges in auxiliary control panel.... 1,170.00

NOTE: Acetylene and Oxygen gas cylinders with reducing valves and gauges required for operation of the burner, should be installed by a local bottle gas company in accordance with regulations.

More detailed information sent upon request.

ARTHUR H. THOMAS COMPANY

LABORATORY APPARATUS AND REAGENTS

WEST WASHINGTON SQUARE

PHILADELPHIA 5, PA.

Teletype Services: Western Union WUX and Bell System 314-22
Biographical Sketches of Proposed New Officers

University, 1943. Awarded competitive scholarship, Royal Institution for Advancement of Learning, 1933-1934. Sigma Xi research award, 1944; research award, American Academy Arts and Sciences, 1945.

Fellow, A.A.A.S., 1946; Member, American Chemical Society; American Association of Clinical Chemists (Chairman, Committee on Education); Electrochemical Society; American Association University Professors; Sigma Xi; Phi Lambda Upsilon; Alpha Chi Sigma, Chaos Club (Chicago).

SECRETARY

MAX M. FRIEDMAN, Senior Chemist at Queens General Hospital, New York, Consultant Chemist at Lebanon Hospital. He was born in Austria on January 24, 1907 and completed his undergraduate work at the University of Alabama in 1930. After also studying at Columbia and New York University he was awarded his Doctorate by the Polytechnic Institute of Brooklyn in 1947. His main scientific interest is body water or, more specifically, extracellular fluids. His research for the past several years has been divided between body fluids and nucleic acid in normal and pathological tissues.

VICE-PRESIDENT

HUGH J. McDONALD. Born, Glen Nevis, Ontario, Canada, July 27, 1913; Queen's University, 1930-1932; B.Sc. in Chemistry (with highest honors), McGill University, 1935; M.Sc., Carnegie Institute of Technology, 1938; D.Sc., 1939. Major work for doctorate in physical chemistry, with minors in organic chemistry, physiological chemistry and physics.

Research fellow, teaching assistant and part time instructor, Carnegie, 1936-1939; Instructor in chemistry, Illinois Institute of Technology, 1939-1941; Assistant Professor, 1941-1943; Associate Professor, 1943-1945; Professor, 1946-1948; Professor and Chairman, Department of Biochemistry, Stritch School of Medicine of Loyola University, Chicago, since 1948. Consultant, Argonne National Laboratory, since 1945. Manhattan Project, Columbia

TREASURER

LOUIS BASIL DOTTI is Chemist at St. Luke's Hospital in New York City and Lecturer in Physiology and Biochemistry at the New York Medical College. He was born in New York City on August 13, 1903, and graduated from Columbia University in 1929. He also did his post-graduate work at Columbia, receiving his M.A. in 1931 and his Ph.D. in 1936. He has worked extensively on carbohydrate and calcium metabolism, digestive enzymes and liver function tests.

MEMBERS OF THE EXECUTIVE COMMITTEE

JOHN GUNTER REINHOLD, Associate in Charge of Chemistry at the William Pepper Laboratory of Clinical Medicine at the University of Pennsylvania Hospital, also holds the rank of Assistant Professor of Physiological Chemistry at the Graduate School of Medicine of the University of Pennsylvania. Born in Milwaukee, Wis., on October 29, 1900, he graduated from the University of Wisconsin in 1924 and received his M.S. degree at Yale in 1926. In 1933 he was awarded a doctorate in physiological chemistry from the University of Pennsylvania. During the war he served as chemical consultant to the Commission on Liver Diseases of the Army Epidemiological Board.

HARRY SOBOTKA is Head of the Department of Chemistry at Mt. Sinai Hospital, New York City. He was born in Vienna, Austria, on August 4, 1899, and after studying at the University of Vienna received his Ph.D. from the University of Munich. He did post-doctorate research at the University of Munich and microbiological studies in Copenhagen. In addition to numerous research papers, reviews, articles and textbook chapters in the fields of clinical chemistry, enzymes, organic chemistry and colloid phenomena, he is the author of two books on steroids and vitamins.

MARSCHELLE H. POWER is Professor of Physiological Chemistry in the Mayo Foundation, Graduate School, University of Minnesota, and Head of the Division of Biochemistry at the Mayo Clinic. He was born in Edgar, Nebraska, September 1, 1894, and graduated from the University of Nebraska in 1917. He received his Ph.D. degree in organic chemistry from University of Nebraska in 1923. His publications have included papers relating to the nature of the blood sugar as studied by means of in vitro dialysis, carbohydrate metabolism, hyperinsulinism, renal function, acid-base equilibrium in the blood, metabolic abnormalities in Addison's disease and in Cushings' syndrome, the use of radioactive iodine in the study of the thyroid gland and the metabolic effects in man of administration of adrenocorticotropic hormone and of various steroid hormones of the adrenal cortex.

ARTHUR KNUSON, Associate Dean and Professor of Biochemistry at Albany Medical College, Albany, N.Y. Dr. Knudson was born in Milwaukee, Wis., August 13, 1905. (Continued on page 12)
American Board of Clinical Chemistry’s Program

The American Board of Clinical Chemistry, Inc., came into being after long and thoughtful study of the professional problems of the clinical chemist by the Committee on Clinical Chemistry of the American Chemical Society and the American Society of Biological Chemists, Incorporated (Chemical and Engineering News, 28, 4446, December 18, 1950). It was logical and proper that these two organizations and the American Institute of Chemists long established professional societies which have been active for years in raising the standards of chemistry and developing the professional status of the chemist and which include among their membership essentially all chemists in the country, should take the initiative in the organization of such a certifying board. There is a history of more than twenty-five years of effort by these organizations, through conferences and negotiations with the other professional groups concerned in the operation of the clinical laboratory, to obtain for the clinical chemist the status necessary for his professional development and for the best use of chemistry in the care of the patient. Two articles by Victor C. Myers ("Some Problems of Clinical Chemistry," Chemical and Engineering News, 24, 2615, October 10, 1946) and one by Warren M. Sperry ("The Professional Status of Clinical Chemistry," Chemical and Engineering News, 28, 159, January 18, 1950), summarize the status and problems in this field, recount the history of the efforts to improve the standards of clinical chemistry and the status of the clinical chemist. The judgment of the Committee that the organization of such a board would involve many problems that would require time to straighten out proved to be correct. However, the Board is now organized ("Board of Clinical Chemists Open for Business," Chemical and Engineering News, 29, 4446, December 18, 1950) and although there are still problems, there are no basic reasons to feel they cannot be solved with time, understanding, and patience. The Board asks all those interested to join in making this development as sound and as rapid as possible.

The Board is analogous in purpose and function to the various medical specialty boards which have served for many years to establish standards and qualifications for persons wishing to practice in a specialized field in medicine (Directory of Medical Specialists, The A. N. Marquis Company, Chicago). The aim of the Board is to establish and improve a standard of competence for those who practice clinical chemistry in the interest of the public and the development of the science, and to certify as specialists those who voluntarily comply with the requirements of the Board. The action of the Board is based upon the candidate's ethical and professional record, training, experience and attainment, as well as results of a formal examination. While the Articles of Incorporation permit the Board to engage in activities, in addition to certification, in the interest of clinical chemistry, the Board feels that its principal function should be certification and that it should not promote any activity which might prejudice this function.

The Board is founded on the following basic principles which the Board and the sponsoring societies believe are necessary for maintenance of its competence, integrity and sound development:

1. The Board should be an independent organization, free from pressures of any kind from its founding societies or any other organization, group or individual.

2. The structure of the Board should be subject to change to meet new problems and situations, but by a process of due thought, deliberation and substantial agreement.

3. Membership of the Board should be balanced so as to include those persons experienced in the various aspects of the field.

4. While qualifications for certification should be as clearly stated as possible, interpretation and judgment by the Board are necessary for workability.

5. Standards for certification should be set as high as feasible under the present circumstances and raised as conditions permit.

The original members of the Board were necessarily selected by the sponsoring societies. Thereafter, they are to be elected by the Board from lists of nominees requested of these societies and others. After nomination and election the individual serves only as a member of the Board and not as a representative of the society which nominated him. There would be no surer way of undermining confidence in such a board than by having it develop into an organization of competing groups. The Board must be of a judicial, rather than of a legislative character. Tenure is limited to five years to provide for turnover of members of the Board, and provisions have been made by which new or additional members may be elected from nominees requested from other than the sponsoring societies and from at-large. The Board is cognizant of the importance of maintaining balance in the experience and location of its members, and elections from others than the founding societies can be expected as the Board develops.

The requirements for certification as listed in the Bylaws are guiding principles under which the Board functions. Experience has shown that it is practically impossible to state such matters in enough detail to cover all situations which arise or to convey the same meaning to all persons. One of the principal functions of a board is the administration of the principles under which it functions to practical situations not easily foreseen in detail. For this reason it is necessary that the Board be free from pressure and bias and be of the highest integrity.

If the standards of the Board are placed too high the group of Certified Clinical Chemists becomes an honor society and the Board fails in its function just as surely as it fails if it certifies those who are obviously incompetent. The Board has tried to set its present standards at a reasonably workable level. With time it will be possible and even imperative to raise this level. Experience has shown that in the beginning it is necessary in order to avoid unjust action, to certify certain candidates on the basis of their experience in the field in lieu of formal advanced training. It should be made clear that while the Board will undoubtedly make some errors in judgment, its purpose is to certify as to competence in the field of clinical chemistry, and that both competence and activities in the field will be required of candidates.

The Board recognizes the difficulties of stating an exact and unequivocal definition of a clinical chemist, but believes it must consider for certification those who are expert in the understanding and performance of chemical methods as an aid in evaluating the state of health, and in the diagnosis, prognosis and study of disease. The clinical chemist may work in a hospital laboratory, a teaching institution, a private laboratory, a public health laboratory, or a laboratory of pathological chemistry or toxicology. The kind of skills required, the responsibilities involved and the professional problems arising are similar in all these situations and are those in which the Board is interested. It is, therefore, necessary that the membership of the Board be such as to provide experience and judgment in dealing with applications for certification from whomever they may come in this wide group.

Every effort will be made by the Board to co-operate with the specialty boards of other professions which function in the clinical laboratory. This is most necessary for the best service of chemistry to medicine. However, this relationship must not be on the basis of competition between academic degrees and the like, but must be guided by mutual respect for competence and responsibilities in the respective fields, and, above all, by co-operative endeavor of each to contribute the best in the service of a common goal.

Theoretically, certification should im-

(Continued on page 6)
Long before Jos Kahn's life had run its full course, an unfathomable destiny removed him from his wife and sons, one of whom he has named after the famous French scientist Claude Bernard, from his mother and from his friends and colleagues.

We remember when he landed here in 1930 upon an invitation to join the research staff of the Department of Chemistry at the Mount Sinai Hospital on a Hensheim Fellowship. He had been highly recommended by an assistant of Professor Richard Willstätter. In the course of his doctor's thesis at the University of Munich, he had as a student made some ingenious contributions to the chemistry of cancer. He proved to be a most fertile scientist and started a series of valuable contributions and publications in several fields of biochemistry.

Like not too many others — perhaps because of his personal observations during the occupation of Belgium by the Germans during the first world war — he had foreseen in time what was brewing in Germany and decided to settle here. Soon an opportunity arose for an independent job of permanent nature as Chief Chemist of Beth Moses.

JOSEPH KAHN (1900-1951)

MARGARET L. ROSENBERG

It was a great shock to the friends and associates of Margaret L. Rosenberg to learn of her untimely death in a motor accident on August 25, 1951 on a vacation trip to the Adirondacks. She was a native New Yorker, and had received both her B.S. and M.S. degrees from Columbia University with biochemistry as her major subject.

She had worked in the laboratories at College of Physicians and Surgeons, Columbia University, as well as on various research projects at Mt. Sinai, Montefiore and other hospitals. She was always interested in clinical chemistry and was among the first to join the American Association of Clinical Chemists. She was unusually gifted in all sorts of arts and crafts and photography, receiving a license from the New York Board of Education to teach these subjects in recreational classes.

The American Association of Clinical Chemists, Inc., including many of her friends and associates, wish to extend heartfelt sympathy to the members of her family.

CALIFORNIA LICENSURE

The Southern California Section continues its activities to secure provision for specialized licensure in the new State Regulations that are now in preliminary stages of formulation. According to reports, the outlook seems favorable. Many medical men fully recognize the need to encourage qualified chemists to enter the clinical laboratory field, and are sympathetic with the principle of specialized licensure, which would permit a qualified chemist to participate in clinical chemistry without the present deterrent of first securing additional training in non-chemical phases of clinical laboratory work. However, full assurance must be given that no licensed biochemist would improperly practice in the non-chemical phases of work. Therefore, as an essential step, efforts are being made to define satisfactorily what phases of work constitute clinical chemistry in the clinical laboratory.
A Major Scientific Development

Kopp-Natelson Microgasometer

For the Microgasometric Determination of Carbon Dioxide, Oxygen and Other gases

*REF.: NATelson, S. et al. (1953), Determination of Carbon Dioxide Content with Microgasometer, demonstrated at the Sixth National Chemical Exposition, Chicago, September 5-9.

Patent Pending

Kopp-Natelson Manometric Microgasometer Model 511

Determination of Carbon Dioxide, Oxygen, Carbon Monoxide, Nitrogen, etc. from ultra-micro volumes (0.08 ml) of Blood, Plasma or Serum.

No pipette is needed for sampling. Micro-Pipette of precision calibration contained in the instrument makes possible direct sampling from fingertip or heel. Pipette is interchangeable, being attached by semi-balljoint.

Operation is surprisingly simple and rapid. Procedure of drawing in and measuring of sample and reagents, producing of reduced pressure, shaking of mixture in the reaction chamber, and taking of manometric readings at constant volumes is all one continuous operation and is accomplished by manual turning of the wheel.

No contact with air is possible during sampling or drawing in of reagents because of special technique employed, such as forming mercury seals and mercury globules from the tip of the Pipette.

A great time saver. Fast and accurate routine clinical analyses. A single determination with washing of the instrument takes but a fraction of the time required with macro devices.

Easily learned by the technician because of the simplicity of the procedure with a resulting increase in efficiency and comfort.

The instrument holds less than 7 ounces of mercury and is silent in operation.

Cuts operating costs drastically because of savings in time, chemicals and mercury, while producing quick positive determinations of unequalled accuracy.

Thick wall pyrex glass parts which are replaceable and easily interchangeable are used throughout. Vacuum ground stopcocks equipped with Kopp exclusive Tension Lock devices. The manometer is engine graduated in millimeters from 0 to 350 mm.

Unusually versatile. Macro gasometer analyses, where manometric procedures are used are quickly adaptable to micro quantities with this instrument.

Portable. Weighs approximately 15 lbs.

KOPP SCIENTIFIC, INC. 405 East 62nd Street New York 21, N. Y.

MANUFACTURERS AND SUPPLIERS OF SCIENTIFIC INSTRUMENTS AND LABORATORY APPARATUS
MEMORANDUM

A. Articles of Incorporation.

In the beginning it was the natural procedure for the Board's coming-into-being to be set up by some interested parent organizations. Neither of these three organizations claims to represent the American Association of Clinical Chemists as such. Thus the American Association of Clinical Chemists must be opposed to a perpetuation of this initial expedient. Since, on the other hand, a body which would be self-perpetuating on a mere personal basis is utterly foreign and repugnant to our concepts of government, of law, and of citizenship, the system of election of the members of the Board must be based on nominations from the group of persons, previously certified or eligible for certification. A survey of the composition of the various National Boards of Medical Specialties points the way. It appears to be invariably the custom to have a group of specialists certified; i.e., judged by a board elected from the top ranking members in this specialty, nominated by a College or similar supreme organization, representing the body of previous diplomats. A set-up of this nature with the proper checks and balances must be the ultimate goal of the Board.

The AACC, as witnessed by its Constitution and By-Laws and requirements for membership, does not purport to take the place of a "College of Clinical Chemistry". The AACC recognizes the provision in paragraph 2 of Article VIII for the accession of other nominating societies as a step in the right direction for a preliminary period of, say, three years. The AACC had existed for about two years at the time of the incorporation of the Board. From our previous correspondence with Drs. Bessey and Goebeler we now expect that this provision will be implemented forthwith in respect to the AACC and possibly also to other organizations and that certification with and without examination will be held up until then. The third paragraph of said Article VIII, which relegates the additional members of the Board to membership on sufficiency, is objectionable to the AACC, particularly as it points to the latter a standard provision expressed in Article X.

Under the assumption that the situation will be promptly improved in the direction indicated, the AACC withholds for the moment its objection to the second paragraph of Article III. But we hold that the purposes enumerated in said paragraph should form one of the tasks of the future organization of Clinical Chemistry Diplomates in order to guarantee the traditional separation of legislative and judicial functions.

B. By-Laws.

The principal objections of the AACC center on Article IX of the By-Laws, which deals with Certification. Before listing the objections, it appears to be necessary to restate or paraphrase this Article IX, since its present language contains certain ambiguities and contradictions.

Section 1 lists certain educational requirements for "applicants". They are: (a) a doctorate in Science in a biological science or in Medicine; (b) and (c) additional courses in certain branches of Chemistry; (d) is an escape clause for special cases.

Section 2 says that "applicants shall also meet one or more of the following qualifications". It then lists two qualifications: (a) three years full time experience etc. and (b) five years of professional rank in certain fields. Paragraph (c) in spite of the preamble of Section 2 does not contain a qualification, but states that persons qualifying "under this Section" may be certified without examination.

Section 3 says that persons without the full formal education, but with at least ten years of practice in a senior position may be certified without examination.

Section 4 deals with examinations, but paragraph (b) permits optional certification without examination prior to a given date.

You will agree that the language of this article is most bewildering. The qualifications of "applicants" in Section 1 and in Section 2 are evidently concurrent, in other words the applicant must have a doctorate degree plus a minimum of special chemistry courses and, in addition, either three years
PRECISION with convenience in FLAME PHOTOMETRY

The new Baird Associates Flame Photometer presents a marked advance in this demanding field.

Primarily intended for the determination of Na and K concentrations, the instrument can equally well be used for accurate determination of Ca and Li. Among its outstanding advantages are these:

MULTILAYER INTERFERENCE FILTERS — for the maximum rejection of extraneous wavelengths. For example, Ca error in a reading of Na can be no greater than 1/90 of 1%.

SEALED FLAME SYSTEM — using compressed air, completely isolates the system from the room atmosphere. Tobacco smoke, soap powder, dust, or other contaminants in the air have absolutely no effect on the measurements.

NO THERMAL DRIFT — because (1) the flame system is outside the rest of the instrument, and is effectively isolated from sensitive circuits, (2) the optics themselves have very poor infrared transmissivity, and (3) there are no delicate electronic circuits to become unbalanced by heat.

HIGH THRESHOLD SENSITIVITY —

<table>
<thead>
<tr>
<th>Element</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>0.004 meq/1</td>
</tr>
<tr>
<td>K</td>
<td>0.005 meq/1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.025 meq/1</td>
</tr>
<tr>
<td>Li</td>
<td>0.07 meq/1</td>
</tr>
</tbody>
</table>

HIGH REPRODUCIBILITY OF MEASUREMENTS — within 0.5%

SLOW FLOW — permitting the use of samples as small as one cc, with ample time for measurement.

DEPENDABLE PERFORMANCE — taking full advantage of the time-tested ruggedness and sensitivity of the light-beam type of suspension galvanometer.

The simple controls of this instrument do not require micrometer-precise setting, and inexperienced personnel can easily be trained to use it at full efficiency.

Write for our free Bulletin 37 giving performance data and full technical specifications.

Baird Associates, Inc.
33 UNIVERSITY ROAD CAMBRIDGE 38, MASS.
experience or five years of professorial rank. Thus the separation into two Sections is confusing.

Paragraph (c) of Section 2 refers to "candidates with qualifications under this Section" (obviously Section 2 is meant). From what has been said above, namely that applicants, here called "candidates", must conform both to the qualifications of Section 1 and to one qualification of Section 2, the language of Section 2, paragraph (c) simply means "all candidates". This statement is in principle acceptable to the AACC. However, from the specific nature of Section 2, paragraph (c) and the separate specific statement concerning waiver of examination for incompletely qualified applicants in Section 1, one might construe that the intention of the authors was a different one.

This suspicion is confirmed by Section 4, paragraph (b), which reasserts the possibility of waiving the examination (already expressed by the preceding section for all candidates), but now a time limit is put on those qualified according to Section 2 (a) based on "training and experience". This implies that university professors without experience may be certified without examination even after the limiting date. In the light of this statement, it appears that the reference to "waiver" in Section 2, paragraph (c), was meant not to read "with qualifications under this Section", but "with qualification under paragraph (b) of this Section".

We shall now list our objections to this Article:

I. Section 1(a) "in biological sciences" may include biochemistry, but no other branches of chemistry. We hold that a substantial number of Clinical Chemists, including some of the most prominent exponents of this specialty, have majored in branches of chemistry other than biochemistry or physiological chemistry. The language should thus read "in chemistry or in one of the biological sciences".

II. Section (b) and (c) "accredited courses in etc." is not good enough. It must read "on the graduate level". The present specification would be satisfied by the chemical courses included in any undergraduate premedical curriculum. No further comment to this point seems to be necessary. Incidentally, the separation of (b) and (c) is misleading and, at best, unnecessary.

III. The AACC is strongly opposed to certification, with or without examination, of persons who do not meet the minimum qualifications of 3 years full time experience. This provision conflicts with the public good. We consider the holding of professorial rank and even the passing of an examination wholly insufficient for certification. Moreover, we feel that "three years full time experience" (Article IX, 2, a) must be qualified by "in a senior position" and also by "within the last ten years". The preamble and paragraph (a) of Section 2 should be amended in this sense, and the paragraphs (b) and (c) stricken out.

IV. No separate provision is necessary for those of the Charter Members who may not meet all the qualifications of Section 2, since Article III, Section 2, automatically confers certificates upon "Initial Members".

V. We furthermore suggest that the dead-line for the "grandfather clause" in Article IX, Section 4, paragraph (b) be extended to December 31, 1952 or to June 30, 1953.

VI. In addition to our objections to Article IX, Section 1, we also object to similar grounds to Article III, Section 2, line three and four. We suggest that the words "shall be considered eligible to secure a certificate, which shall be forthwith with issued to a nominee upon election to the Board" be replaced by "for a period of at least two years".

The above remarks contain valid reasons for the objections raised by the AACC. We wish to add that there are enough practicing clinical chemists both within and without the AACC of professorial rank whose election would guarantee the proper representation of universities among the future members of the Board.

FEBRUARY 20, Letter from Dr. Bessey to Dr. Sobotka, as President of the AACC.

Dear Dr. Sobotka:

This is to acknowledge receipt of your letter and resolution of February 5, 1951. I shall bring your suggestions before the Board at a meeting to be held sometime in the near future.

Sincerely yours,
Otto A. Bessey

(Continued next page)
"Dr. Sperry suggested that it would be helpful in dispelling the fears of the group who suspect the Board if Dr. Bessey would draft a statement including the information he presented to the Committee and amplifying the philosophy of the certifying program for possible publication in THE CLINICAL CHEMIST. I assured him that The Clinical Chemist would welcome the opportunity of publishing such a statement, adding that part of the existing difficulty was the failure of the Board to recognize the Clinical Chemist when it had released material previously.

"All of this appeared to provide the basis of an understanding between Board and Association with the Committee acting as mediator. This compromise will gain the objectives of the Association while preserving the "integrity" of the Board. The proposal made was (1) the Board to revise the requirements for certification along the lines outlined in the Memorandum. (2) Dr. Bessey to address a letter to the Association setting forth the reasons behind his action, plans for its development. (3) the Executive Committee in the light of the proposed action for revision of requirements for certification and clarification of the motives and intentions of the Board, to submit its advice to the membership to refrain from applying for certification and to recommend instead that members shall now apply. (4) the unwritten, gentleman's understanding implicit in Dr. Bessey's remarks in effect that the Association can anticipate being represented on the Board by additional members and becoming a nominating society."

MAY 22, Letter of Dr. Sobotka to Dr. Bessey.

Dear Dr. Bessey:

To my regret I could not come to Cleveland and there attend the meeting of the Committee on Clinical Chemistry. Drs. Sperry, Reinhold and Dotti have reported on the fruitful discussions which had taken place and we are all looking forward to an early liquidation of the past impasse by our combined efforts.

I hear that you will be so kind as to address a letter of ca. 600 words, dealing with the aims, modus operandi, and the judicial position, in short, with the philosophy of the ABCG, to THE CLINICAL CHEMIST for publication in its Newsletter. The Executive Committee is standing by to implement your actions by a statement which will be published together with your letter. Since all such material for our Newsletter will henceforth be cleared through the Executive Committee, I suggest that you mail your letter to me, even though you might wish to address it to the membership at large.

With kind regards,
Yours very truly,
Harry Sobotka, Ph.D.

JUNE 6, Letter from Dr. Bessey to Dr. Sobotka.

Dear Dr. Sobotka:

This is to let you know that the American Board of Clinical Chemistry has authorized me to prepare a short article dealing with the purposes, aims and general philosophy of the Board such as referred to in your letter of May 22. Also, I have authorization to reply to your letter and enclosures of February 5 which contained a number of criticisms of the Board. Since this job comes at a congested time for me and will require a circulation of papers to the Board, it may be a month or so before the matter can be completed.

With best regards,
Otto A. Bessey
President

DECEMBER 12, News release from Dr. Harrisson, Secretary of the ABCG to THE CLINICAL CHEMIST for first publication in January, 1952 issue. Printed on page 3.

DECEMBER 17, Dr. O.E. Gaebler, member of the ABCG and former member of the Executive Committee of the AACC corresponded with Dr. Reinhold, and allows his communication to be quoted all or in part. Pertinent observations by Dr. Gaebler follows:

"I wish to take up specifically the matter of the ABCG memorandum and what was done about it. Copies of the memorandum submitted to Dr. Bessey were prepared by Dr. Harrisson and submitted to all members of the Board prior to the Chicago meeting. This meeting consisted of six long sessions, May 25-27, 1951. The first session was devoted largely to the memorandum. It became evident at once that if we took up extensive revision of the Articles of Incorporation and Bylaws we would devote all sessions to this, and would spend another year in legal red tape in which we were sick and tired already. So the remaining five sessions were devoted to the function of certification which we were now, for the first time, legally ready to do, and which we will keep on doing to the best of our ability.

"Three dispositions could have been made of the memorandum. It could have been rejected completely, adopted completely, or adopted in part and kept for further study and action. Complete rejection was not even considered for the document contained items of evident merit. Complete adoption would have given everyone the impression that the Board consists of a timid group that jumps through hoops and does not proceed by a process of due thought and deliberation. The AACC would, without doubt, have joined the Board's sponsoring societies in despising a group of this sort. Instead, the third course was adopted, and I am in position to draw upon official minutes and revised bylaws to support this statement.

"It was moved, seconded, and carried that Sections 1a and 2a of Article IX of the Board's bylaws be amended to read "Chemistry or the biological sciences" and "three years' full-time experience in the immediately preceding 10 years" precisely as suggested in the memorandum. The amended bylaws were subsequently typed and sent by mail to all members of the Board for a vote by mail. The new bylaws which I have only recently received are amended as stated above, so I assume the vote was unanimous. Otherwise it would have been necessary to wait until the next annual meeting, where a two-thirds vote would suffice.

"The remainder of the memorandum was kept in mind during certification, and was held for further study. None of it was ignored. If the Board were run by a dictator in an arbitrary manner, it could move much faster. The legal and parliamentary course is slower, but will, I am sure, produce more permanent results."

(The two changes, italics, indicated above appear in a copy of the By-Laws of the ABCG dated October 1951. In Article II Section 1a and 2a on page 9 line 7 and page 10 lines 4 & 5 respectively. No other changes, except the renumbering of the Sections of Article III appear.)

1952 JANUARY 2, Resolution passed by the National Executive Committee at a meeting held in Philadelphia is published on page 2. This resolution urges the membership to review the events with the Board and decide for themselves whether they should apply for certification.
ABCC ANNOUNCES
FIRST CERTIFICATIONS

The ABCC, Inc., has issued certificates to 47 of the many applicants who have completed the filling of their papers. These are the first certificates to be issued and they represent applicants principally residing in New York, Pennsylvania, Illinois and California. To date, the Board has received nearly 400 requests for certification applications, and expects that many additional requests will be filed before July 1, 1952, the date upon which the certification without examination will be discontinued under the present By-Laws. Requests for such forms accompanied by the required fee of $1.00 may be addressed to the Secretary—Jos. W. E. Harrison, 212 Walnut Street, Philadelphia 3, Penna.

According to the Certificate of Incorporation of the ABCC, Section III paragraph 5, the Board will "—prepare and furnish in the public interest a registry of individuals with specialized knowledge in Clinical Chemistry who have from time to time been granted certificates by the Board." As soon as such a list is available, the names of the newly certified Clinical Chemists with their laboratory affiliations will be published in THE CLINICAL CHEMIST.

The ABCC also announces the appointment of Mr. A. J. Nydick of New York City as its legal counsel. Mr. Nydick is a graduate of the Towne Scientific School of the University of Pennsylvania from which he received the degree of B.Sc. in Chemistry. He attended the University of Pennsylvania Law School and is a member of the New York and Philadelphia bars, specializing in chemical legal matters, particularly in patent and food and drug fields.

EXECUTIVE COMMITTEE MEETS

The meeting of the National Executive Committee of the American Association of Clinical Chemists was held in Philadelphia on January 2, 1952. Those present included John G. Reinhold, President; Albert E. Sobel, Vice-President; Max M. Friedman, National Secretary; Harry Sobota, Ellen Mae Vielgiver, Harold D. Appleton (by invitation) and William R. Brown (by invitation).

All order of business was dispensed with to devote adequate time for discussion of certification by the American Board of Clinical Chemistry. Several points of view were presented, including the suggestion to set up a certifying agency within the framework of the Association, or on the other hand to unreservedly support the present Board. The advantages and disadvantages of both positions were discussed at great length. Letters from Drs. Geesler and Somogyi, members of the Association and members of the Board, to Dr. John G. Reinhold were introduced into the proceedings. The following general conclusions were arrived at:

1. The membership requires some positive action at this time.
2. The extreme positions as noted above would result in dissensions if either were adopted as policy of the Association.

It was therefore unanimously agreed that all the pertinent correspondence between the Association and the Board, and releases by the Board be published in the newsletter so that any individual member may decide for himself whether he wishes to apply for certification. The previous recommendation by the Executive Committee that members refrain from applying for certification was therefore rescinded.

The death of Dr. Jos Kohn, a charter member of the Association and a member of the Editorial Board of the CLINICAL CHEMIST, was noted with deep sorrow. Attached to these minutes is a memorial to his bereaved family.

It was agreed that an Honorary Membership award in the Association should be presented at the Milwaukee meetings in April, 1952.

PROPOSED OFFICERS
(Continued from page 4)

1889. He received his doctorate degree at Columbia University 1914 in biochemistry after attending Missouri and Wisconsin Universities. Post-doctorate work took him to Harvard and to Cambridge. He has been associated with Albany Medical College since 1914. He has held the chair in biochemistry since 1892. He was appointed Associate Dean in 1923.

Dr. Knudson is well known for his work on food and nutrition and was a member of the National Research Council 1943-1945 and did research for the Armed Forces in the last war. His interests center on the biochemistry of lipids; radiation; vitamin D; metabolism in leukemia; metabolism of cholesterol and cholesterol esters; chemical assay of digitalis and atropine.

Dr. Knudson is at present on a year's leave, teaching in the medical schools of Bangkok, Thailand. He will return to this country in July.

ARNOLD G. WARE, Head Chemist Los Angeles County Hospital and Assistant Professor of Biochemistry, University of Southern California, and Chairman of the Southern California Section AACC. Dr. Ware was born in Butler, Illinois, 1915 and received his doctorate in biochemistry from the University of Colorado 1942. He was associated with that institution from 1938-42 as assistant in biochemistry and as clinical chemist in the laboratories of the Colorado General Hospital.

He saw service with the United States Army from 1942-1946. He was appointed Research Associate at the College of Medicine, Wayne University, associated with Dr. Walter Seegar in a research program concerned with blood clotting.

Dr. Ware is a member of Society for Exp. Biol. and Med., American Society of Biological Chemists, Sigma Xi, International Society of Hematology, Fellow of the American Assoc. for the Advancement of Science. His scientific interests center about blood coagulation; body temperature control and preparation of fibrinogen by cold fractionation.

Margaret Kaser of Milwaukee was selected as chairman of arrangements for the Milwaukee meetings, and Saul Roseman as chairman of the scientific program.

Since many items of the agenda could not be reached due to time limitations it was decided to hold another Executive meeting within a month.

Respectfully submitted,
Max M. Friedman, National Secretary
LOCAL SECTION NEWS

BOSTON SECTION

The Boston Section held its second meeting of the current season on November 28, 1951, at the New England Center Hospital, Boston. The guest speaker was Dr. Theodore B. VanItallie of the Harvard School of Public Health, who spoke on the subject, "The Use of Intravenous Fat In Man."

Because of the greater calorogenic and protein-sparing characteristics of fat, a suitable intravenous preparation has been long sought for. The speaker described his own efforts in this direction, which appear to have been successful.

The larger fat-particle size of earlier preparations led to the danger of embolism formation. Using a dairy homogenizer, Dr. VanItallie was able to achieve a particle-size of about 0.5 microns. In addition, the emulsion is stable on storage, is not treated as a foreign body, and is very quickly metabolized. It is a mixture of coconut oil, phospholipids (as an emulsifier) and esters of oleic acid. Compared with glucose, an equal number of calories may be infused by vein in one quarter the time. It is used as a 15% emulsion.

Clinical trial in diseases in which intestinal fat absorption is impaired, as nontropical sprue, steatorrhea, etc., has been successful. Receiving no food by mouth, one patient tolerated the intravenous emulsion for 67 days, obtaining as much as 1300 calories per day. Its use appears to prevent depletion of the patient's depot fat and further breakdown of protein, exhaustion of which leads to extreme emaciation.

Pharmacologically, the emulsion is expected to attract great interest. As a vehicle for such fat-soluble substances as vitamins A, E, and K, and the steroid hormones, for example, it would be possible to infuse large quantities in a relatively small volume.

No guest speaker was scheduled for the December 19 meeting of the Boston Section. Instead, because of the Holiday Season, a dinner was planned after which several members presented short talks of clinical-chemical interest.

On January 16, Frank Stratton, chemist of the Boston Police Department, spoke on Toxicology. This meeting, as others, was held in the Stearns Auditorium of the New England Center Hospital, Boston.

SOUTHERN CALIFORNIA SECTION

Arnold G. Ware, Ph.D., Chairman of the local section, spoke on "Hemoglobin Derivatives" November 6 at Los Angeles County Hospital. An abstract may be expected in the next issue of the CLINICAL CHEMIST.

Paul T. Gilbert, Jr., M.A., was guest speaker December 4 when the local membership met in the South Pasadena offices of Beckman Instruments, Inc. Mr. Gilbert, who has been designing and developing Beckman instruments for several years, spoke on "Flame Photometry." He discussed and demonstrated the latest Beckman flame spectrophotometer, an instrument for which he has primary responsibility.

This instrument features a compact metal burner-atmospheres unit. The sample solution is drawn in through the lower tip of a palladium capillary, suction through vacuum and atomizing being accomplished by an oxygen stream issuing under pressure from the narrow annular space surrounding the upper tip of the capillary, fuel (hydrogen or acetylene) being admitted through a second annular space surrounding the first. There rises a steady flame of about five to seven cm., height and about one cm. maximum width. Although the design is quite simple, Mr. Gilbert pointed out that proper functioning requires precise machining and assembling of the unit.

Mr. Gilbert touched on many points pertinent to flame photometry phenomena and instrumentation. The Beckman optical system is designed to collect the light from a small patch of flame (about two by six mm.). The location of this patch may be rather critical since light emission due to a given element varies appreciably along the length of the flame. Characteristics of light emission versus oxygen pressure and fuel pressure were described. A plausible mechanism for sodium-potassium mutual interference (enhancement of sodium light emission in samples containing appreciable amounts of potassium and vice-versa) was given. He speculated briefly on the future possibilities of extremely energetic flames such as perhaps an fluorine-hydrogen flame, pointing out that certain high excitation spark lines (as of calcium) had already been observed in present flames.

To minimize clogging, the capillary bore is larger than that of the glass atomizer supplied with the previous chamber-type model. However, gradual clogging may occur when aspirating solutions supersaturated with gas, since bubbles form within the capillary. Mr. Gilbert said that a momentary lowering of the solution would usually dispel this clogging promptly, and further recommended the use of "desiccated" beakers to contain the solution. For example, it was not possible to aspirate a carbonated soft drink; however, placed in a "desiccated" beaker, the solution rapidly degassed and aspirated satisfactorily thereafter. ("Desicate" is a solution of an organic silicone compound.)

The interlaboratory survey of analytical results is now complete and was the subject of an open discussion meeting January 8 at Cedars of Lebanon Hospital. A full report will be given in the next issue.

On February 5 several local members will present 10 to 15 minute papers on their personal research problems. The meeting is scheduled for Room 113, Wadsworth General Hospital, Los Angeles Veterans Administration Center, 8:00 P.M.

NEW YORK SECTION

Isidor Gubernick, Secretary, will notify members of the exact date and place of the next meeting. Tentative plans call for the meeting to be held Tuesday, January 29, at the New York Academy of Science.

Harry Sobotta, member of the National Executive Committee, and A. J. Nydick, former legal counsel of the AACC, are scheduled to speak on "The Present Status of Clinical Chemistry."
LOCAL SECTION NEWS (Continued)

CHICAGO SECTION

The Chicago Section held its announced business meeting, at which the following new officers were elected:

President - Clarence Cohn, Michael Reese Hospital, Chicago, Ill.
Vice-President - Samuel Natelson, Rockford Memorial Hospital, Rockford, Ill.
Secretary - Alvin Dubin, Cook County Hospital, Chicago, Ill.
Treasurer - Chi Che Wang, Veteran Administration Hospital, Hines, Ill.

Several members will present papers at the Scientific session of the Stated Annual Meeting of the AACC to be held April 3 in Milwaukee, Wisc.

PHILADELPHIA SECTION

The regular meeting of the Philadelphia Section of the American Association of Clinical Chemists was held Thursday, November 29, at Presbyterian Hospital, Dr. Carl Alper of Hahnemann Medical College spoke on "A New Method for Determination of Serum Lipase."

At the business meeting it was moved, seconded, and the motion carried that the Philadelphia Section act favorably on a letter from Dr. Thomas Cope, Pennsylvania Association of Clinical Pathology, suggesting that interested groups get together for the purpose of discussing possible future amendments by the legislature to Bill 1205.

SERUM LIPASE

by CARL ALPER

HAHNEMANN MEDICAL COLLEGE

The determination of serum lipase activity may be simplified by the use of a tributyrin emulsion as a substrate. The emulsion is prepared as follows:

Add 250 ml. of 2% calcium acetate solution to 250 ml. of 0.5% sodium diethyld barbiturate solution. Add to the solution 6.875 mg. of sodium cholate, 0.25 ml. of 'Tween 20', and 0.5 g. of Methocel Dow Chemical Co.). Add 0.25 ml. of tributyrin and mix in a Waring Blender for 3 to 5 minutes. Adjust to pH 6.55. The emulsion is stable with respect to lot globule size for at least 14 days.

The determination of serum lipase using the tributyrin emulsion described above overcomes the technical problems of pH control, the nature of the oil-water interface, temperature control, errors associated with titration in an heterogeneous medium, and economy of time. The results obtained with normal sera place a new interpretation on the significance of the lower limit of lipase activity.

LABORATORY APPARATUS

ONE PAN BALANCE

A newly developed One Pan Berenker Type Balance has recently been introduced by The Emil Greiner Company, 20-26 North Moore Street, New York 13, New York.

The new Balance is especially designed to provide fast, accurate weighings for all rough laboratory weighings, animal weighings or other general laboratory work.

This compact new balance is extremely simple to operate, and gives quick, exact weighings. It comes in white enamel finish, and is equipped with a detachable chrome-finished pan. A flat plate instead of the pan can be specified on the largest-size Balance.

CM dimensions range from 32x21x13 to 38x26x14, and capacity, KGS from 6 to 14. Prices are from $39.50 to $49.50, depending on dimensions.

STOPCOCK ADAPTERS

3 sizes of stopcock adapters—small, medium and large—to cover the full range of laboratory stopcocks have also recently been introduced by the Emil Greiner Co.

The small size adapter covers the range of 2mm to 4mm stopcocks; the medium size covers 6mm to 8mm; and the large size, 10mm to 15mm.

These Universal Stopcock Adapters are designed for laboratory technicians who require pressure stopcocks for burets, gas sampling, measuring apparatus, etc.

Manufactured completely of corrosion resistant materials, these new adapters eliminate the annoyance of leaking stopcocks and the high cost of special pressure stopcocks.

PATRONIZE OUR ADVERTISERS
LABORATORY APPARATUS
MICRO MANOMETRIC GASOMETER

One of the prime advances in the use of ultramicro methods in clinical chemistry laboratories is the commercial availability of a Micro Manometric Gasometer for the gasometric determination of CO₂ and oxygen in blood, plasma, or serum.

This apparatus was designed by Dr. Samuel Nettleton, Rockford Memorial Hospital, Rockford, Ill., newly elected Vice-President of the Chicago Section of the AACC, and a scientist well known for his research on micro methods in clinical chemistry.

The apparatus consists of a precision calibrated ultra micro pipette and a vernier drive screw for analysis of high accuracy with 0.001 ml blood, plasma, or serum. No pipette is needed for sampling. The pipette contained in the instrument makes possible the instrument makes possible direct sampling from finger or heel.

The pipettes are interchangeable, being attached by semi-ball joint. All glass parts are replaceable and easily disassembled for cleaning. There are minimal mercury losses because of the small volume of mercury used in the apparatus.

Readings are made independent of atmospheric pressure. Volumes are obtained from differences in pressure readings on the manometer before and after absorption of specific gas measured. Other gasometric analysis where manometric procedures are used may be quickly adopted to micro quantities with this apparatus. Results are said to equal the precision and accuracy of those obtained with macro instruments.

The apparatus consists of a column secured to a substantial metal base to which are attached the pipette, manometer and other glass parts necessary for sampling and direct measuring of blood in ultra-micro quantities. A reservoir at the bottom of the column is filled with mercury serving as a continuous. A precision ground stainless steel plunger with a vernier screw permits accurate measurement of the required quantities of serum and reagents. A conveniently located shaker is used to facilitate the liberation of gas to be measured. The base is finished in acid-resistant enamel and has two easily adjusted leveling screws. All metal parts are of aluminum, stainless steel, or chrome plated. Glass parts are connected by semi-ball joints. Stopcocks and joints are high-vacuum precision ground. The socket around the pressure is adjustable and may easily be replaced. Supplied with thermometer for accurately measuring room temperature.

The Nettleton Micro Manometric Gasometer is distributed and manufactured by Nettleton Scientific, Inc., 405 East 62nd Street, New York 21, N. Y.

This volume, a collection of ultraviolet spectra, is a good addition to libraries of laboratories that center their interests in this type of work. The emphasis is placed on polynuclear hydrocarbons and includes heterocyclic compounds with functional groups.

Thirty-four pages of simply written text, treats the application of ultraviolet analysis for qualitative and quantitative work in organic chemistry. The 579 spectra illustrations have been transformed to conform to a consistent method of plotting. The spectra are printed on one side of the page so that laboratory spectra may be superimposed. Each spectra is complete with the structural formula of the compound, solvent used, source of material and literature reference. The instrument used is indicated, if known.

The pages are loose-leaf and the book spiral bound with a semi-hard binder. This format makes it very hard to recommend for a much used library reference, though, the publisher may have thought about that in using a very good grade of paper. Libraries may do well to have their reference copies rebound.

BOOK REVIEWS

This book consists of 20 review articles contributed largely by recognized authorities in their respective fields. The contents of these articles may be divided roughly into three categories. The first part of the book is devoted to the traditional aspects of bacterial physiology and deals with the chemistry and structure of the bacterial cell, bacterial growth, inheritance and bacterial nutrition. The second part is concerned largely with bacterial biochemistry and contains interesting discussions of bacterial enzymes, bacterial oxidations, the dissipation of carbohydrates, and the assimilation of carbon dioxide by autotrophic and heterotrophic organisms. This portion of the book further contains excellent reviews on nitrogen and mineral metabolism. The third part of the book presents a series of short contributions illustrating the significance of bacterial physiology in the broader fields of general biology with five stimulating articles entitled "The Comparative Biochemistry of Molecular Hydrogen", "Assimilation by Bacteria", "Degradation and Synthesis of Complex Carbohydrates", "Significance of Autotrophy for Comparative Physiology", and "Luminous Bacteria". The book appears well adapted for graduate students in bacteriology and biochemistry. It appears somewhat advanced for use at the undergraduate level. There can be no doubt that "Bacterial Physiology" will prove a welcome addition to the library of all research workers in bacteriology, biochemistry and related fields.

NEW MEMBERS ELECTED BY THE EXECUTIVE COMMITTEE

January 1, 1952

Sylvia Blatt
New York, N. Y.

Mary J. Frieder
Benton, Ill.

Humphrey Cavanagh
Traverse City, N. J.

Ellie Gardner
Forest Hills, N. Y.

Stanley S. Green
Alhambra, Calif.

Helen C. Cavallaro
New Haven, Conn.

Stephen J. Kasriel
Washington, D.C.

Marvin R. Sisler
Oklahoma City, Okla.

A. George Reifman
Los Angeles, Calif.

BOOKS TO BE REVIEWED

CORRECTION PLEASE

Due to a printing error, the masthead of the November issue of this newsletter was outdated and did not contain the names of the newly appointed Editorial Board and Advisory Board. The masthead as published in this issue is the correct one.
it's an ALL PURPOSE Thick-Lead PENCIL

Sure it is a marking pencil — the best made to fill the tremendous demand for a quality marking pencil.

But it is more — Much More! It's a

“CHINA-MARKING PENCIL” for marking on glass, porcelain, plastic, metal, rubber and other very smooth surfaces.

“HEAT RESISTANT MARKING PENCIL” for marking on hot or cool surfaces — retains its mark in boiling water or dry heat in excess of 1000°F.

“SKIN MARKING PENCIL” for outline marking on skin.

“GRAPHITE PENCIL” for writing, drawing or sketching on paper, newsprint, cardboard, wood, leather and similar surfaces.

“CELOPHANE MARKING PENCIL” for marking frozen food packages, wax paper, moist or frosted surfaces of cellophane, metal, etc.

“CHECKING CRAYON” for checking, marking or coloring on paper, wood, cardboard, cloth, newsprint or similar surfaces.

Just think — one pencil with the proper lead will fill your demand for a marking pencil, layout pencil, checking pencil and the hundreds of other specialized uses for a thick pencil.

82490 MARKING PENCIL, Mechanical. Supplied with one china marking lead 2 3/4 ins. long. Please specify color—Black, Red, Blue, Green or Yellow. Ea. .25 per dozen 3.00

Refill Leads 15¢ for a pack of 4 leads

82491 CHINA-MARKING LEAD. For marking on glass, porcelain, skin, plastic, metal, cellophane and other very smooth surfaces. 5 colors—Black, Red, Blue, Green and Yellow. Specify color. 4 leads, 2 3/4 ins. long, in box.

Per box of 4 leads .15 Per dozen boxes 1.80

82492 HEAT RESISTANT LEAD. For marking on hot or cold surfaces. Retains its mark in boiling water or dry heat in excess of 1000°F. 2 colors—Red and Black. Black color will change to red at 300°F.

Per box of 4 leads .15 Per dozen boxes 1.80

82493 GRAPHITE PENCIL LEAD. For writing, drawing or sketching on paper, newsprint, cardboard, leather, wood or similar surfaces. In 3 degrees of hardness. B—medium, 4B—soft, 7B—very soft.

Per box of 4 leads .15 Per dozen boxes 1.80

82494 CELLOPHANE MARKING LEAD. For marking frozen food packages, moist cellophane, wax paper, metal, etc. 3 colors—Black, Red and Green.

Per box of 4 leads .15 Per dozen boxes 1.80

STANDARD SCIENTIFIC SUPPLY CORP.
34 West 4th Street
New York 12, N.Y.

LABORATORY APPARATUS - REAGENTS - CHEMICALS
STATED ANNUAL MEETING
APRIL 2: MILWAUKEE, WISC.

The 1951 Stated Annual Meeting of the American Association of Clinical Chemists will be held with the Milwaukee Session of the 121st ACS National Meeting, March 30-April 3. Headquarters of the Session and scene of most of the meetings will be the Milwaukee Municipal Auditorium. Members are urged to attend.

The AACC is participating with the Division of Biological Chemistry in the Clinical Chemistry Section Wednesday morning, April 2 with Marchelle H. Power presiding. The range of topics in this and other sections is very wide and of more than usual interest. Symposia covering Antibiotics, Enzymes, Amino Acids and Proteins, Metabolism, and Radiochemistry are among the sessions in the program of this meeting. The program for the AACC scientific session is published.

The Stated Annual Business Meeting of the AACC will be held at 4:30 P.M. on Wednesday, April 2. The meeting will be followed by the Dinner of the AACC which is scheduled to start at 6:30 P.M. The speakers will be Dr. Armand S. Quick of Marquette University noted for his work in the field of the blood clotting mechanism and determination of Prothrombin, and Dr. Hugh J. MacDonald, Chairman of the Department of Biochemistry at Loyola University, Vice Presidential nominee of the AACC and Chairman of the Committee on Education. An honorary membership in the Association will also be conferred.

Milwaukee itself is an extremely interesting city. It has frequently been called the best governed city in the United States and in order to acquaint us with many of the features of Milwaukee there will be a tour of the city on Monday, March 31.

H. G. TERWILLIGER

PROGRAM FOR THE SCIENTIFIC SESSION

Program in conjunction with the Division of Biological Chemistry, 121st National Meeting of the American Chemical Society, to be held Wednesday morning, April 2, 1952 in the Auditorium, Plankinton Hall, Milwaukee, Wisconsin.

Marchelle H. Power, Chairman

9:00—M. H. Power. Introductory Remarks.
10:20—Hugh J. McDonald and Edward P. Marbach. Fractionation of an AC/1 Preparation by ionophoresis.
10:35—Sam Rosenstain, Robert Abeles, and Albert Dorfman. Preparation and Metabolism of C4-CarboxylSulfoxyc and Gentic Acid.

(Continued page 2)

ESTABLISH ANNUAL AWARD FOR CLINICAL CHEMISTRY

THE ERNST BISCHOFF AWARD

The Ernst Bischoff Award of the American Association of Clinical Chemists, Inc. will be presented annually to a chemist on the staff of a hospital or clinical chemistry laboratory who has distinguished himself by achievement and devotion and has helped solve those chemical problems which arise daily in the practice of the medical arts.

H. G. Terwilliger, President of the Ernst Bischoff Company, Ivoryton, Conn., manufacturers of biologicals and pharmaceuticals, and John G. Reinhold, President of the American Association of Clinical Chemists, Inc., announced the establishment of an annual award in Clinical Chemistry.

The award is to be known as the "Ernst Bischoff Award in Clinical Chemistry". The recipient of the award, chosen annually by an Award Committee of the AACC, will receive a sum of $500, a scroll and specially designed bronze medal. The award will be presented to a chemist "on the staff of a hospital or clinical chemistry laboratory who has distinguished himself by achievement and devotion and has helped to solve those chemical problems which arise daily in the practice of the medical arts".

Dr. Reinhold has appointed Harry Sobota, Mt. Sinai Hospital, New York, Chairman of the first Award Committee. The committee consists of Elliot F. Beach, Metropolitan Life Insurance Co., New York; Joseph Bennett, Tufts College Medical School, Boston, Mass. and Samuel Natelson, Rockford Memorial Hospital, Rockford, Ill.

This committee will select the recipient of the first Ernst Bischoff Award.
with the expense of another ballot, should the present one lapse due to inadequate support.

SCIENTIFIC PROGRAM
(Continued from page 1)

10:50—Martin B. Williamson and Herbert J. Fromm. Sulfur Metabolism During the Healing of Experimental Wounds.
11:20—Penri A. Lipschitz and Albert E. Sobel. Vitamin A Levels During the Human Menstrual Cycle.

The Division of Biological Chemistry, Richard H. Barnes, Chairman and Otto Schales, Secretary, has organized an excellent program for the four day meeting. Space does not permit publication of the entire program, which would be of interest to our readers. A brief resume follows:

Monday Morning - Symposium on Antibiotics and General Papers.
Monday Afternoon - Symposium on Enzymes.
Tuesday Morning - Symposium on Alternate Pathways of Carbohydrate Metabolism.
Tuesday Afternoon - Symposium on Tryptophan Metabolism.
Wednesday Morning - Papers in Clinical Chemistry.
Wednesday Afternoon - Symposium on Chemical Structure and Biological Activity of Growth Factor Analogues.
Thursday Morning - Symposium on Peptides and Proteins.
Thursday Afternoon - Symposium on Enzymes, Metabolism and General Papers.

All meetings will be held in the Auditorium, Plankinton Hall. Complete program is published in CHEMICAL AND ENGINEERING NEWS, Vol. 30, No. 7, page 636. February 18, 1952.

MEMBERS INVITED TO EUROPEAN CONVENTIONS

Members have been invited to attend two European Conventions this year.

ASSOCIATION DINNER AT FEDERATION MEETINGS

As in past years, members of the AACC attending the Federation of American Societies for Experimental Biology meetings will hold a dinner-meeting during the convention week. The 36th Annual Meeting of the Federation will be held in New York City April 14-18.

Notice as to the time and place of the "improvised" meeting will be posted at both the Statler Hotel and the Hotel New Yorker, headquarters for the meeting.

NEW MEMBERS ELECTED BY THE EXECUTIVE COMMITTEE
February 6, 1952

Joseph D. Mann Rochester, Minn.
A.E. A'Court Goldsboro, N.C.
Dorothy Chew Norfolk, Virginia
Isadore Felsky Long Beach, Calif.
William F. Bergen Alameda, Calif.

EUROPEAN CONVENTIONS
(Continued)

The Netherlands Clinical Chemistry Association has invited the members of the AACC to participate in its Fifth Anniversary celebration to be held in Amsterdam, The Netherlands, during September 1952.

The invitation was accepted by President Reinhold for the Association with the suggestion that the date be moved closer to that of the 2nd International Congress of Biochemistry to be held in Paris, France July 21-27. It was also recommended that the Amsterdam meeting be considered the First International Congress of Clinical Chemistry.

Professor J.E. Courtois, Faculté de Pharmacie, Sorbonne, Paris, France, and General Secretary of the 2nd International Congress of Biochemistry, extended an invitation to all members of the AACC to participate in the second congress.

The 2nd International Congress of Biochemistry will be held in Paris, France, July 21-27, 1952. It will open in the Grand Amphitheatre of the Sorbonne. Congress sessions will be held at the Sorbonne and in the neighboring university buildings.
THE SECRETARY REPORTS

The Stated Annual Meetings of the AACC have now become a highlight of the Association activities. From the first one, which was held in Atlantic City in 1949, these meetings have been very successful. Other, meetings were held in Philadelphia in 1950, Boston in 1951, and now Milwaukee in 1952. The sessions usually include a scientific program and symposium on some subject in clinical chemistry, a dinner, and a business meeting. In the past, efforts have been made to carry out this complete program within a one day period.

The Executive Committee has been faced annually with the decisions as to where and when such meetings should be held. It might be of interest to point out some of the determining factors as to the choice of time. Officers and members of the Executive Committee assume their duties on July first of each year. Without the facilities of a permanent office staff it is obvious that fall meetings would be very inconvenient, since preparations for these would have to be executed over the summer months. Mainly for that reason it has been decided to hold these meetings during the spring.

It is also quite obvious that in view of our relatively small membership scattered over the entire country, it is necessary for the Association to hold its meetings in conjunction with some larger scientific society. The choice of the American Chemical Society has been made for its many advantages. Much of the arrangements are carried out by the Association by the Executive officers of the ACS. We have the availability of preparing scientific programs, as well as publicity in the C&EN both before and after the meetings. And not of least importance is the fact that the ACS has been extremely cooperative in making our meetings as successful as they have been. It is also apparent that the Association contributes to the meetings of the ACS by presenting programs in this specialty of chemistry.

An important function that the Association has not yet attempted on an adequate scale is that of employment information. With a bi-monthly newsletter this undertaking becomes difficult

(Continued page 5)
THE DEVELOPMENT OF CLINICAL CHEMISTRY IN FRANCE

By
Paul Felix Fleury, Professor of Biochemistry, Faculty of Pharmacy, University of Paris, Former president of the Societe de Chimie biologique, and the Societe de Biologie clinique

and

Jean Emile Courtois, Professor in the Faculty of Pharmacy of Paris, President of the Societe de Biologie Clinique, Secretary of the Societe de Chimie biologique

I. — The Origins:
As early as the end of the 18th century, Lavoisier, the founder of modern Chemistry can also be regarded as the creator of Physiology and Biochemistry.

From that time analytical chemistry was created and developed in the course of the last century by European chemists, many of whom were Frenchmen whose bent of mind is essentially analytical: Chevreul, Gay-Lussac, Thénard, Vauquelin, Dumas.

This characteristic of the French mind accounts for the fact that in France particularly, Biochemistry was to show a marked and constant tendency towards its analytical form.

Thus the main part of the work of G. Bertrand, the greatest living French biochemist has been concerned with the determination of mineral elements present in more or less considerable amounts or merely as traces in living matter, constantly revealing his efforts to use a precise analytical method, which he always strives to make more sensitive and accurate.

French pharmacists played a great part in furthering such progress, for they possess a fine scientific heritage and have retained the tradition of the old European apothecaries who contributed so much to discoveries made in the heroic age of Chemistry.

Since by French law no pharmacist may pursue any commercial activity other than the dispensation of medicines, many of them have always directed part of their activity to laboratory work.

The list is very long indeed of substances obtained in a crystalline form in the course of analyses of vegetables carried out in laboratories frequently attached to very small pharmacies, a list ranging from quinine, isolated by Pelletier and Caventou, to the numerous alkaloids and various sugars obtained by Tautet.

These laboratories had always carried out urine analyses: tests for glucose and albumin in the first place and in course of time other determinations in urine (urea, chloride) and then in blood and other biological fluids.

But it was chiefly in the hospital pharmacies that many methods, now in current use in French laboratories of clinical chemistry, were perfected: the quantitative determination of phosphate or glucose in urine, tests for bile pigments, determination of chloride, cholesterol, or iron content of blood, etc.

II. — The distribution and management of laboratories:
At the present time, regulations concerning the opening of laboratories of clinical analyses and their management fell under the act of March 18th 1946 and the order of May 18th 1946. In accordance with these the following is a brief outline of the distribution of laboratories.

In big towns the hospitals generally have a central laboratory of clinical chemistry attached to the hospital pharmacy and directed by the same head of department.

He not only supervises routine analyses but also directs research done in association with the medical staff of the establishment.

Many hospitals are also equipped with laboratories of Serology and Bacteriology generally superintended by Doctors of Medicine who are specialized in that particular branch.

French doctors receive a thorough training in pathological anatomy; so in the hospitals there is a laboratory of pathological anatomy in almost every medical and surgical department. A technical assistant prepares tissue slices under the supervision of the head of the department; these physicians show great interest in histological examinations despite the fact that they are pathologists, surgeons or doctors specialized in other branches.

They make a point of spending a short time every morning in the laboratory examining the tissue slices.

In the built-up areas, there are many private laboratories of varying size, which do analyses in clinical chemistry as well as in Bacteriology and Serology. Almost all these laboratories are directed by qualified Doctors of Medicine or Pharmacists; a few only belong to Doctors of Science or Chemical Engineers. The latter must have specialized in clinical chemistry and cannot open a laboratory without authorization from the Ministry of Public Health which first approaches the Academy of Medicine and the Academy of Pharmacy.

In short almost all private laboratories are directed by doctors or pharmacists: one quite often finds a director who is both a qualified Doctor and pharmacist; one also very commonly finds a doctor and a pharmacist running a laboratory in partnership.

This is to be accounted for by the more or less complimentary training of holders of these two degrees.

In France medical studies do not differ essentially from those in other countries. The large number of subjects studied and their constant development leave little time for the study of medical chemistry.

But, on the other hand, it has been tradition in France for the scientific training of the pharmacist to be far more thorough than in most other countries. Courses are only given in institutions of higher education that are an integral part of the universities.

In a five year course, the would be pharmacist receives an excellent training in the double field of physical and natural sciences; very many hours of laboratory work are combined with the theoretical lectures. In particular: these are 2 year courses in Analytical Chemistry and Biochemistry and a course in Bacteriology is taken in the final year.

The Faculty of Medicine and the Faculty of Pharmacy also give diplomas in Biochemistry, Bacteriology and Serology which may be taken after a year of further study by holders of degrees in Medicine or Pharmacy.

It may well be that as a result of the increasing specialization of laboratory work and its development, these two Faculties will associate, combine their courses and give a special degree in clinical pathology.

As France is both industrial and agricultural a large section of the population is scattered in little villages and small towns. But in towns with 1,000 to 5,000 inhabitants, of which there are many, a laboratory of clinical pathology would not be sufficient to ensure the livelihood of its proprietor.

So one or more local pharmacies have laboratories carrying out not only routine analyses in clinical chemistry and Bacteriology but also certain chemical analyses (milk analyses in breeding areas, wine analyses in wine-growing regions, examination of drinking water, etc.).

It has been our intention simply to give a broad outline of the distribution of laboratories; actually, in France, which despite its apparent diversity is a homogeneous country, one can find all possible intermediate stages between the research laboratory of clinical chemistry of a big
hospital and the country pharmacists shop which does determinations of sugar and albumin in urine.

The owners of all these various laboratories are grouped in to two scientific Societies; The Societe de Chimie Biologique has 1,700 members, this Society and the Biochemical Society of Great-Britain are the largest associations of biochemists in Europe. The "Bulletin de la Societe de Chimie Biologique", founded in 1914, publishes almost all original research in General Biochemistry done in University, hospital or private laboratories. The Societe de Chimie Clinique is a more specialized Society, with a membership of approximately 1,200 heads of laboratories, more than 60% being qualified pharmacists and most of the others being doctors in medicine. Its publication "Les Annales de Biochimie Clinique" publishes original papers on laboratory methods.

III. The Development of Methods:

As in all countries, these methods are incessantly being improved upon. They are constantly increasing in number and variety. It is not within our province here to give any detailed description of them; we shall therefore simply give a brief list of methods in current use in French laboratories of clinical chemistry.

The determination of cholesterol in blood is now most frequently used by different chemists, but the ones most frequently used are based on the reduction of iodoboric acid or ferricyanide in a slightly alkaline medium. Glucose is determined in urine as frequently as in blood; the most commonly used methods are polarimetric measurements and determinations using the cupro-aluminate reagent.

Proteins are usually estimated by gravimetric or turbidimetric methods; but colorimetric methods using the bilirubin test are gaining ground.

The determination of cholesterol in blood is frequently requested by doctors; it is carried out with a colorimetric method using the Liebermann test.

Chloride determination in urine by silver nitrate is falling out of practice; but it still remains one of the most current determinations in blood.

Although practiced less frequently than those above, many other determinations are very commonly employed; we would note in particular: the determination of acetone in urine by iodometric titration after distillation; bile salts and bile pigments in urine and their quantitative determination in blood; iron determination in blood; phosphatase determination in serum; calcium, sodium, and potassium determinations in blood; ketosteroids determination in urine, etc.

Liver and kidney function tests are becoming increasingly important; the so-called serum and plasma tests; the V. L. test, the elimination of diastase tests (phenol-sulphazolinol), clearance tests with mannitol, thiosulphate, p-nitrophenol, hippuric acid, etc.

As in all countries, there is a general tendency to carry out determinations on the smallest possible amount taken from the biological sample.

Chemical micromethods have replaced most of the old macromethods and photometric technique are developing space.

We hope that this account has given some idea that this organization an evolution of clinical chemistry in France.

IV. Common Features and Common Problems:

We should however like to point out that the differences which may be found between your organization and ours are apparent rather than real ones.

One of us recently had occasion to verify this fact. During the recent Congress in New York he had the honour and pleasure of being invited to your Society's dinner of conversing informally with members of your Committee and visiting one of your laboratories in New York.

Biochemists active in clinical chemistry are confronted with similar problems in both our countries. Above all that of ensuring and constantly improving technical equipment and keeping to the high scientific standard required in a perpetually advancing branch of knowledge.

Our respective forms of scientific training too are much closer and more similar than the different names of universities degrees would lead one to suppose; these different names do of course apply to university systems based on quite distinct conceptions and traditions. But we are often faced with the same difficulties especially with the same paramount necessity of obtaining recognition for the autonomous nature of our specialized studies.

Biochemistry is now one of the most important branches of science; it has had to fight to win its independence from the Sciences from it originally derived; organic chemistry, analytical chemistry and physiology.

Clinical Chemistry is undoubtedly one of the most important sections of Biochemistry; scientifically speaking it is as distinct from pure analytical chemistry as it is from pure medical science although being closely and necessarily related to these sciences.

Biochemists who work on clinical chemistry are not the technical assistants of other specialists, they are themselves specialists in a rising science to which they must devote the greater part of their activity.

The progress of science inevitably leads to increasing specialization; this progress has given rise to clinical chemistry; it would be running counter to such progress not to consider that specialists in clinical chemistry should be set on the same level as specialists in other branches of chemistry and medicine.

In many countries clinical chemists are establishing their organizations; relations between national associations are as yet in the preliminary stages, but the first signs are promising.

At its last meeting in Washington, in September 1951, the International Union of Pure and Applied Chemistry set up a Biochemistry section. One of the three commissions composing this section will be the Clinical Chemistry Commission. Three members have been nominated to reorganize this commission: E. J. KING (Great Britain), Chairman, W. SPERRY (U.S.A.) and P. FLEURY (France).

The first meeting will be held at the time of the 2nd International Congress of Biochemistry in Paris in July 1952.

Biochemists from all over the world will meet on the occasion of this congress; several sessions will certainly be devoted to the presentation of work in clinical chemistry.

During his stay in the U.S.A. one of us ascertained that many members of your Society intend to come to Paris next year. We have informed our French colleagues of this. They are looking forward to the pleasure of welcoming you, of showing you Paris and France, taking you round their laboratories and entertaining you in an atmosphere of friendly and mutual understanding.

We hope that as many as possible of you will come and then you will learn far more about us than you can from this inevitably rather bald account.

THE SECRETARY REPORTS
(Continued from page 3)

through the medium of the CLINICAL CHEMIST. Perhaps some other form of "employment clearing" might be devised where pertinent information could be exchanged. Any recommendations or suggestions by the membership would be welcome.

From recent information it seems that several metropolitan areas are now in the process of organizing local sections. The advantages gained from activities of local sections make them such that we can only hope for many more in the near future.

Max M. Friedman, National Secretary
SECTION I
EXECUTIVE COMMITTEE
(a) The Executive Committee shall meet at the time of the Stated Annual Meeting, and shall also meet at the call of the President or upon written request of five or more Committee members made to the National Secretary.
(b) The proceedings of all meetings shall be published; however, publication may be deferred by a majority of those present.
(c) Any Committee may be discharged by the President with the approval of the majority of the entire Executive Committee.
(d) The President shall prepare the agenda for all Executive Committee meetings, this agenda to be distributed by the National Secretary to the members of the Executive Committee at least ten days before such meetings. The entire membership of the Executive Committee shall be polled at the request of any member of the Executive Committee.
(e) Any member of the Executive Committee may designate an alternate for each meeting by writing to the National Secretary. The extent of the authority of such alternate shall be clearly stated by the member.
(f) The Executive Committee shall review the Annual Budget submitted by the National Treasurer. Expenditures or commitments of funds in excess of fifty dollars shall require approval by the Executive Committee unless included in the Annual Budget.

SECTION II
PRESIDENT
(a) The President shall preside at all meetings of the Executive Committee, and at stated meetings.
(b) The President shall nominate all committees, subject to the approval of the Executive Committee.
(c) The President shall represent or designate delegates to represent the Association in response to invitations from other societies or institutions.

SECTION III
VICE-PRESIDENT
(a) In the absence or inability of the President to perform his stated functions, the Vice-President shall perform the duties of the President.

SECTION IV
NATIONAL SECRETARY
(a) The National Secretary shall be the guardian of the seals and all other official records of the Association.
(b) The National Secretary shall conduct the official correspondence of the Executive Committee.

SECTION V
NATIONAL TREASURER
(a) The National Treasurer shall keep all records pertaining to finances of the Association.
(b) The National Treasurer shall submit a budget for each fiscal year to the Executive Committee in advance of its Stated Annual Meeting.
(c) The National Treasurer shall maintain a fiscal policy within the Annual Budget approved by the Executive Committee.
(d) The National Treasurer shall prepare a complete financial statement of the fiscal year to be published in the newsletter.

SECTION VI
NEWSLETTER
(c) A newsletter shall be published bi-monthly by an Editorial Committee. The name of the newsletter shall be the CLINICAL CHEMIST.

SECTION VII
MEMBERSHIP
(a) Where local sections exist, applicants for membership shall be approved by the Membership Committee of that section. After approval by the local sec-

SECTION VIII
LOCAL SECTIONS
(a) The policies of the local sections shall conform to the policies of the Association.
(b) All members of local sections shall be members of the Association.
(c) By-Laws of each local section shall become effective upon approval by the Executive Committee.

SECTION IX
CODE OF ETHICS
(a) The Executive Committee shall approve a Code of Ethics to which all members are expected to conform.
(b) A Committee on Ethics shall be appointed.
(c) It shall be the duty of the Committee on Ethics to determine whether a breach of ethics has been committed by a member.
(d) The Executive Committee shall review the decisions of the Committee on Ethics.

SECTION X
APPROVAL OF BY-LAWS
(c) These By-Laws, if approved as provided in Article XIV of the Constitution, shall become Amendment I of the Constitution.
(b) This section shall not become a part of Amendment I.

NAACL CONVENTION
The National Association of Clinical Laboratories will hold its next Convention and Annual Meeting at the Palmer House, Chicago, Ill. on May 8-9, 1952.
For Information Write to:
Michael Harti, Exec. Sect’y
9827 Jamaica Avenue
Richmond Hill, 18, N.Y.
A Major Scientific Development

Kopp-Natelson Microgasometer

For the Microgasometric Determination of Carbon Dioxide, Oxygen and Other Gases

*REF.: NATelson, S. et al. (1959), Determination of Carbon Dioxide Content with Micorogasometer, demonstrated at the Sixth National Chemical Exposition, Chicago, September 5-9.

Determination of Carbon Dioxide, Oxygen, Carbon Monoxide, Nitrogen, etc. from ultra-micro volumes (0.03 ml) of Blood, Plasma or Serum.

- No pipette is needed for sampling. Micro-Pipette of precision calibration, contained in the instrument, makes possible direct sampling from fingertip or heel. Pipette is interchangeable, being attached by semi-balljoint.

- Operation is surprisingly simple and rapid. Procedure of drawing in and measuring of sample and reagents, producing of reduced pressure, shaking of mixture in the reaction chamber, and taking of manometric readings at constant volumes is all one continuous operation and is accomplished by manual turning of the wheel.

- No contact with air is possible during sampling or drawing in of reagents because of special technique employed, such as forming mercury seals and mercury globules from the tip of the Pipette.

- A great time saver. Fast and accurate routine clinical analyses. A single determination with washing of the instrument takes but a fraction of the time required with macro devices.

- Easily learned by the technician because of the simplicity of the procedure with a resulting increase in efficiency and comfort.

- The instrument holds less than 7 ounces of mercury and is silent in operation.

- Cuts operating costs drastically because of savings in time, chemicals and mercury, while producing quick positive determinations of unequalled accuracy.

- Thick wall pyrex glass parts which are replaceable and easily interchangeable are used throughout. Vacuum ground stopcocks equipped with Kopp exclusive Tension Lock devices. The manometer is engine graduated in millimeters from 0 to 550 mm.

- Unusually versatile. Macro gasometer analyses, where manometric procedures are used are quickly adaptable to micro quantities with this instrument.

- Portable. Weighs approximately 15 lbs.

KOPP SCIENTIFIC, INC. 405 East 62nd Street New York 21, N. Y.
MANUFACTURERS AND SUPPLIERS OF
SCIENTIFIC INSTRUMENTS AND LABORATORY APPARATUS
I don't expect in this talk to cover the whole subject of the training of clinical chemists at the graduate level but only to tell you of some of our own experience and viewpoints. I believe the training of senior clinical chemists will (and should) remain heterogeneous. I believe they will continue to come from many sources and with various backgrounds. We haven't any idea of increasing the training period of clinical analysts in general, perhaps the contrary. We don't propose to encourage the adding of a graduate degree to the prerequisites.

What has concerned me in the scarcity of analysts of a competency sufficient to supervise the operation of the clinical chemical laboratory, and who can be hired for what the ordinary run of hospitals can reasonably pay, is that we must use the term supervise in a broad sense; if a hospital has one chemist (except perhaps in exceptional circumstances) he is supervising the analysts.

Our thinking is not present concerned with the top-notch prosperous hospital that can and does employ a good professional director. Instead we are trying to help make available more people of a scarce category: capable, independent analysts who give promise of serving adequately in the modern hospitals where more people receive their diagnostic laboratory services. We feel that the failure of biochemistry to deliver what it might at this level is quite obvious.

The training of more biochemical Ph.D.'s is a subject for many activities at present; but these people are not educated by research, educational, and industrial organizations so quickly that they give at best a temporary service to the hospital.

A very substantial proportion of our college graduates today want to participate in medicine, if not as physicians then in some other capacity. These range widely in their capabilities. I think there are many who would derive satisfaction from service as responsible clinical chemists. I don't think it is difficult for a responsible young person of reasonable intelligence to receive specialized training to the point where their value to a hospital would be twice that of the average technician. Furthermore, I think most of these hospitals are desperate enough so that there would be a great demand for such specialists. That has emphatically been our experience so far in the placement of our graduates. Our plan has been to have this training lead to the Master's degree.

The first prerequisite for students of this program is that they know what they are in for. If they have not had clinical laboratory experience we ask them to arrange for work in a laboratory somewhere so they will know what it is all about. So far the university of requirements for the M.S. degree and those laid down by the American Chemical Society have been followed. Where the student has not had the required work in all the branches of chemistry, admission is arranged as a "special student", to permit make-up of these prerequisites.

Reading knowledge of German is required. We prefer not to take people under this program whom we think are of very good Ph.D. calibre since this training is arranged to be terminal. The program is for students who are eager to participate in research or to see their names in print. Instead, we hope to continue to find people who are content to serve and cooperate in the bringing of medical care to everyone.

Our course of study is quite experimental. The dissymmetry of the medical school curriculum, that in the principal biochemistry course for the medical students occurs entirely in the second semester, is partially responsible for our particular arrangement. Actually a student would have an advantage in the arrangement of his work if he began his study in February rather than in September. Below are illustrated roughly the division of time, first for a student who has all the prerequisites and second for a student who lacks some:

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>Medical</td>
</tr>
<tr>
<td>Seminar</td>
<td>Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minority</td>
<td>Medical</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Biochemistry 8 cr.</td>
</tr>
</tbody>
</table>

Under the term "seminar" we arrange any kind of teaching that we feel is needed. This work is mostly self-teaching by the student who presents reports in assigned areas. The practical clinical chemistry has so far been carried out exclusively in laboratories of the medical school and in all the laboratories of the New England Medical Center under the able direction of Dr. Joseph Benotti. We also have participating in the instructional work Miss Margaret Rouke, formerly of the Massachusetts General Hospital laboratories. This work is arranged so that the various parts type of teaching requires much time and equipment. Students frequently require financial aid in order to be able to follow through the program.

We are at the same time carrying on (and this is mostly the work of Mr. Benotti) a "degreeless" training for students who lack a Baccalaureate degree or so many prerequisites that the M.S. program is prohibitive. We think that we should offer all compromises and variants to bring more capable and responsible people into the ranks.

The new Baird Associates Flame Photometer presents a marked advance in this demanding field.

Primarily intended for the determination of Na and K concentrations, the instrument can equally well be used for accurate determination of Ca and Li. Among its outstanding advantages are these:

MULTILAYER INTERFERENCE FILTERS — for the maximum rejection of extraneous wavelengths. For example, Ca error in a reading of Na can be no greater than 1/90 of 1%.

SEALED FLAME SYSTEM — using compressed air, completely isolates the system from the room atmosphere. Tobacco smoke, soap powder, dust, or other contaminants in the air have absolutely no effect on the measurements.

NO THERMAL DRIFT — because (1) the flame system is outside the rest of the instrument, and is reflectively isolated from sensitive circuits, (2) the optics themselves have very poor infrared transmissivity, and (3) there are no delicate electronic circuits to become unbalanced by heat.

HIGH THRESHOLD SENSITIVITY
- Na — 0.004 meq/l
- K — 0.005 meq/l
- Ca — 0.025 meq/l
- Li — 0.07 meq/l

HIGH REPRODUCIBILITY OF MEASUREMENTS — within 0.5%

SLOW PLOW — permitting the use of samples as small as one cc, with ample time for measurement.

DEPENDABLE PERFORMANCE — taking full advantage of the time-tested ruggedness and sensitivity of the light-beam type of suspension galvanometer.

The simple controls of this instrument do not require micrometer-precise setting, and inexperienced personnel can easily be trained to use it at full efficiency.

Write for our free Bulletin 37 giving performance data and full technical specifications.

Baird Associates, Inc.
33 University Road
Cambridge 38, Mass.
THE ROLE OF THE CLINICAL CHEMIST IN MEDICAL INSTITUTIONS

by

Harry Sobotka, Ph.D., Chemist to the Mount Sinai Hospital, New York, N.Y.

It might be interesting to find out how many chemists are employed by medical institutions. On one hand, there are the hospitals of the medical schools, strongly departmentalized, each department forming practically a separate unit, often with its own laboratory services. At the other end of the scale, we find highly specialized institutions, particularly for mental health, for tuberculosis and, with the military, for traumatic surgery. They are run by Federal or State Governments and their agencies such as the military. In many — but not all — of these, the chemical problems may be expected to be more or less closely circumscribed.

Between these two extremes, there is the great bulk of public and private hospitals, each with a variety of services, a multiplicity of questions and an immemorable amount of problems. These institutions range from, say, 100 to 1000 and more beds. Including the Veterans Administration facilities, there may be in excess of 3000 hospitals of this nature functioning at any moment throughout the country. We have no exact data as to how many of them employ a chemist. Judging from our membership, which is approaching 500, and which comprises ca. four-fifth hospital chemists, and adding one-third for those who have not yet joined our ranks, there will be about 600 hospitals which have what you might wish to call a "class-conscious" chemist. The greater number of hospitals — presumably the smaller ones and those operating in out-of-the-way places — employ in most instances medical technicians, more or less specializing in chemistry.

Let us consider the larger hospitals in urban centers which are the ones who are setting the pace for the rest of the country. They show a disconcerting diversity for organization. The organization, though not the quality of the services rendered, is relatively uniform in Federal institutions, especially Veterans Administration. In Southern California I learned that the laboratories of some private hospitals, or rather their laboratory services, are rented out as concessions to groups of pathologists. In the Middle West, we find group hospitals, where the pathologist, as partner in a business, takes up 40% of all the laboratory receipts and where the chemist might be offered 1% of his take, of course in addition to his salary. When you come to the Eastern Seaboard, you find clinical chemistry established along more conservative lines, and at the same time probably most alert to new scientific developments and to the impact of the large medical schools.

But one thing is common for all of them, the fact that the laboratories are ruled by the pathologist. I shall talk of the chemist, the pathologist and the clinician in what follows in general, one might say, idealized terms. It is needless to state that there are good pathologists and bad pathologists, good clinicians and bad clinicians, and good chemists and less good chemists. There are even some pathologists and some clinicians who might know more in some field of chemistry than some clinical chemists. I think most of us are agreed that clinical chemistry, like any other kind of chemistry, is the business of the chemist; if often M.D.s are running chemistry laboratories well, then they do so because they are chemists, not because they are pathologists or bacteriologists or surgeons.

Our main fight has seemed to be with the pathologists. Some of them are certainly a cankerous lot, who have for 25 years led the chemists around in circles with all sorts of devices. They have created the term "clinical pathology" to designate not only the quasi-nomad's land of un-analyzed samples, but also strict clinical chemistry as well as bacteriology, hematology etc. But, while these ideas have been incorporated in State laws and City Ordinances — which we shall have to keep on fighting — one can now see that these are modern pathologist is accepting the chemist more and more as an equal, who has to be dealt with fairly and with respect.

The reasons for this change of attitude are not hard to find. Important changes have taken place in the history of medicine. The last 60-70 years saw the development of immunological therapy, accompanied by the ascendancy of bacteriology, the introduction of so-called specific chemotherapy, followed by the sulfur drugs with a more general scope, and finally the antibiotics. One can say without hesitation that some diseases have been practically wiped out, that the therapy of others has been radically changed. Perhaps for tuberculosis and pneumo complications, which are a social rather than a medical problem, this leaves us with diseases of heart and circulatory organs, rheumatic disease and of course cancer as the most important conditions; one might add the problems of general post-operative management.

Important changes have taken place in the history of chemistry: we have learned to determine by practical "clinical" methods sodium and potassium. We have developed methods for such new and novel entities as ketosteroids and protein-bound iodine. For many of the older methods micro-methods have been substituted. In short: Clinical Chemistry has come of age.

Now there is of course much traditional nonsense to be eliminated. The medical profession as a whole wants us and the public to believe that they are something quite special, that they are less interested in material regard than the rest of mankind, that the oath of Hippocrates sets them apart from all others. We will grant that the medical profession, like the clergy, crystallized at an earlier date with a set of ethics, at a time when there was, say, one physician for 10,000 people. But this is a thing of the past. When we look at it in its present-day aspects, the modern pathologist finds that he shares his scientific thinking with the chemist, his scientific colleague, rather than with the clinician, his comrade in an obsolete guild. It is for this reason that clinical chemists must be on the alert and demonstrate their fitness as equal partners. Among the several means to achieve this end, there is educational progress and expansion, subjects ably dealt with by others. The importance of this aspect is witnessed by the fact that important institutions are either having a hard time, or find themselves altogether unable, to secure a qualified clinical chemist.

For those of us who are already beyond the state of education, it is up to our Association and its Local Sections to provide not only lectures, but also exchange of samples and standards on a voluntary basis. If I am not mistaken, the California Section has led the way in this respect.

We are modifying the existing proved methods of Clinical Chemistry; the first volume of a series of Annual Handbooks is about to appear within a few months.

There is the question of certification which has unfortunately hit a few snags. I do not want to go into the lengthy controversies on this subject. After due deliberation the Executive Committee of the Association has now left it to the individual members to apply or not to apply for certification to the American Board of Clinical Chemistry. I think the majority of clinical chemists share with me the feeling that the Board, for reasons not of its own making, does not represent clinical chemistry, since only two out of its nine members are practicing clinical chemists. We hope that the Board will change its not very cooperative attitude towards our Association. But until such time, I think that only those of our members will choose to apply for certification, who find it profitable for their profession.

THE ROLE OF CLINICAL CHEMISTS IN GOVERNMENT SERVICE

by

Lt. Col. Monroe E. Freeman, M.S.C., United States Army

The three major medical programs of the Federal Government are those of the Public Health Service, The Veterans' Administration, and the Armed Forces. Activities for biochemists in the Public Health Service and the National Institutes of Health are primarily in the field of research and investigation; while the Veterans' Administration and Armed Forces maintain extensive hospitalization programs with substantial requirements for specialists in clinical chemistry. Although the Army, Navy and Air Force have separate medical services similar in organization and operation, the medical laboratory services of the Army have reached more clearly defined stages of development, and therefore, offer the best basis for discussion.

A military requirement for chemists and other science specialists in medical laboratories has evolved rapidly since the beginning of World War II, when need was vaguely expressed by an inactive reserve component, the Sanitary Corps. In 1947, however, the establishment of the Medical Service Corps in the Regular Army included clinical chemists as specialists in the Allied Science Section. This change from an uncertain military status in 1940 to an assured position in 1952 clearly reflected the rapidly increasing importance of chemistry and other biological sciences to medical practice and investigation; and the recognition of this progressive trend by the Surgeon General of the Army.

The significance of clinical chemists in the Regular Army should not be overlooked because they are relatively few in number. They exist, not only to staff the permanent laboratories, but also as a nucleus on which to build, rapidly and efficiently, expanded laboratory services suddenly dictated by a military emergency. If medical mobilization required many biochemists from civilian hospitals, laboratories, or industry, the best assurance that these specialists would be advantageously assigned and efficiently employed is the actual existence of well trained permanent officers thoroughly familiar with both professional and military aspects.

Two important steps have been taken: an established professional career for biochemists in the Army; and a clearly defined role in any emergency mobilization of medical resources.

Unsolved problems still remain in the development of an Army career for medical chemists. Some of these are common to clinical chemistry everywhere. Others are peculiar to the military. In the procurement of competent officers, it has been necessary to define realistically the level of professional competence required. This has been a controversial subject anywhere in clinical chemistry; but it is further complicated for the Army biochemist because career officer or active duty reservist must be both a soldier and a scientist. Either is a full time job and a realistic compromise is not simple. To lower the standards of professional competence would at once vitiate the element of officer leadership in professional matters. Therefore, the Ph.D. training should be prerequisite; not because of the medium of research experience or ability entailed, but because the fundamentals of Ph.D. training primarily develop scientific initiative, originality, and self-reliance. These elements, together with a broader understanding of the inter-relationships of science and its practical applications to human affairs are basic qualities of the leadership that is expected and demanded of officers in their scientific duties as well as in their military duties.

Unfortunately, Army hospitals and laboratories can neither afford nor attract the Ph.D. biochemists any more successfully

(Continued next page)

than comparable civilian institutions, and the M.S. degree has been the practical minimum. However, all possible encouragement and assistance is given young officers to complete their Ph.D. training before reaching the senior grades of Major and Lt. Col., where a high level of professional competence and leadership is expected.

The attraction of competent chemists to a regular Army career has not been entirely successful, but this problem should be resolved without difficulty by a wider dissemination of information and assurance on several points: that there is a professional career for qualified biochemists in the Army; that they will not be diverted to other occupations except under unusual circumstances; and that there is ample opportunity for professional improvement and advancement, for participation in research, and for responsible work in professional administration and management. Detailed career plans specifically delineate these points.

Utilization of biochemists ranged from routine clinical chemistry to graduate teaching and direction of research in all phases of medical biochemistry. Clinical chemistry in military hospitals has been complicated by frequent changes in the number and kind of patients. It is expected that well trained experienced clinical chemists will eventually be able to fill responsible roles as consulting specialists in the larger hospitals. Throughout the United States and major Army installations abroad are general medical laboratories exercising supervisory control over considerable areas. In these laboratories, biochemists function as supervisors and consultants on a wider variety of biochemical problems including laboratory investigation and research activities. The Army Medical Service Graduate School in Washington, D.C. has a mission of research, investigation, and teaching in the field of military medicine. This installation includes a Department of Biochemistry that requires a high level of professional competence in the direction and management of major research projects, teaching and training responsibilities at Graduate School level, and consulting services on the application of chemistry to all phases of medical medicine.

While clinical chemists and bacteriologists make up the major part of the medical laboratory specialists, other science specialties such as entomology, clinical psychology, psychiatric social work, and nutrition are included in the Allied Science Section. Specialists in optometry, sanitary engineering, pharmacy, medical supply, and medical administration are represented in the three other Sections of the Medical Service Corps.

The Finnish Association of Clinical Chemistry and Physiology was established in 1947 for the purpose of bringing physicians and chemists interested in these fields of research into closer contact with one another. At present the membership is 70, i.e. 63 physicians and 7 chemists.

The aim of the Association is to promote the development of clinical chemistry and physiology in this country by means of meetings and publications. Furthermore the following aims may be mentioned: to make laboratory study a separate branch of medicine, to establish posts for laboratory physicians and new laboratories, and to provide them with adequate equipment.

The Association is at present discussing with The Medical Association in Finland the question of arranging specialists' rights for laboratory physicians and with The Medical Board the question of arranging laboratory vacancies. We hope to be able to arrange special facilities for training these doctors and chemists in Finland and that they will also have the opportunity of studying abroad.

There are only three hospitals in Finland with either a laboratory physician, permanent or temporary, or a laboratory chemist: two hospitals have a laboratory doctor and one has a laboratory chemist to assist the clinicians. Unfortunately the construction and the equipment of several hospital laboratories are still unsatisfactory. In the new laboratories, with a laboratory doctor or chemist on the staff, there would be facilities for routine and special clinical chemical studies. Laboratory in the Department of Medical Chemistry, Helsinki University, has been of great importance for clinical chemistry in Finland. This Department has also served as the Chief training centre for doctors of clinical chemistry.

The Finnish Association of Clinical Chemistry and Physiology and participates in the publication of the Scandinavian Journal of Clinical and Laboratory Investigation. The 4th Congress of the Scandinavian Association was held in Finland in 1950.

RECENT PAPERS OF INTEREST TO CLINICAL CHEMISTS

Selection Determination of Various Forms of Nitrogen by the Kjeldahl Micromethod.

The Determination of Sodium and Potassium in Blood Serum.

Microdetermination of Serum Proteins by the Biuret Method.

Qualitative Determination of Barbiturates in Forensic Practice.

Rabinovich et. al. (U. Dijon) Lancet 261: 101-102 1951

Corticosteroids in Urine of Normal Persons. Determined by Paper Chromatography.

Paper Chromatographic Analysis of Porphyrins.

Creatinine Estimation in Blood Serum. A New Method.

The Technic of Estrogen Determination in Urine.

The Determination of Biologic Sodium.

Flame Photometer
Model 1B

PROCESS & INSTRUMENTS
Brooklyn 22, N.Y.
LOCAL SECTION NEWS
SOUTHERN CALIFORNIA SECTION

Results of the recent survey of inter-laboratory accuracy were reported and interpreted by Dr. R. J. Henry, chairman of the committee in charge, at the January 8 meeting held at the Cedars of Lebanon Hospital, Los Angeles. The full report of the committee will be published in the April issue of THE CLINICAL CHEMIST. A symposium, emphasizing methods used in the survey, rounded out the program.

Mr. Kenneth Johnson discussed flame photometry, pointing out that most sodium and potassium determinations are now made by some modification of this technique. He spoke briefly on the classical chemical procedures and on the recent separations of sodium, potassium, calcium and magnesium by ion exchange resins.

Dr. Harry Sobel outlined a wide variety of procedures used for calcium determination, remarking on the corresponding wide variation in values obtained by the various methods, which suggests that, for present practical purposes, it may be advisable to determine the normal range for each method. He also suggested that ionic calcium, as well as total calcium, should be determined in clinical chemistry laboratories.

Dr. Merle Lewis pointed out that the Kjeldahl procedure is the accepted standard for the determination of total serum protein, but that the biuret procedure is most often used. The biuret procedure is simpler and relatively specific for proteins, although depth of color development varies with the several protein fractions. Although most clinicians are used to albumin globulin ratios as determined by the Howe (Na₂SO₄) fractionation, she pointed out that the ratios determined by the Wolfson-Cohn (Na₂SO₄, Na₂SO₃) fractionation are more accurate as evidenced by better correlation with electrophoretic determinations.

Mr. George Kingstley sketched the historical development of cholesterol determination, enumerating the difficulties encountered with the sensitive color reaction. He suggested the direct extraction of serum with chloroform and color development at reduced temperatures.

BOSTON SECTION

The Boston Section held its third meeting of the current season on January 16, at the Steinman Auditorium of the New England Medical Center. Frank Stratton, chemist of the Boston Police Department, spoke on toxicological methods, with particular reference to those which should be done as well by larger hospital laboratories. This, he felt, would relieve the Police Department Laboratory of frequently unnecessary work, and in some cases provide evidence of the presence of rapidly excreted substances.

Blood alcohol methods were critically examined by the speaker, who felt that methyl alcohol poisoning was on the increase. The method recommended for this alcohol consists of oxidation to formaldehyde, with subsequent distillation into Schiff's reagent. Although formaldehyde from ethyl alcohol, if present as well, would give a colored product with Schiff's reagent, differentiation is easily made with a spectrophotometer.

Mr. Stratton spoke also on the determination of carbon monoxide in blood, stressing that a sample must be drawn immediately to be of any value. The determination of carbon monoxide hemoglobin as he carries it out is also spectrophotometric. The speaker felt that for this test, most instruments are unsuitable because of their too wide exit slit. One, providing a slit of about 5 millimicrons, is required to resolve the absorption bands of carbon monoxide hemoglobin, and in this regard he spoke approvingly of the Beckman spectrophotometer.

Other tests which he felt should be done by hospitals because of their clinical as well as forensic value are barbiturates chloral, and salicylates. These he also discussed technically.

The next meeting will be held at the usual place on February 20, at 8:00 P.M. Herbert Flesher of Tufts Medical School, will speak on "The Applications of Paper Chromatography in Clinical Chemistry."

CHICAGO SECTION

The Chicago Section of the A.A.C.C. will meet with the Chicago section of the A.C.S. on March 21, 1952 at the Furniture Mart. Dinner will be at 6:30 and the combined meeting will start at 8:00 p.m. At 9:00 p.m. the A.A.C.C. will hold a separate session on "pH Meters." Dr. C. H. Humes of Coleman Instruments, Inc. will speak on the theory of pH meters and the vice-president of the section, Dr. Samuel Natelson of Rockford Medical Hospital, Rockford, III. will speak on the clinical interpretation and value of the pH meter. There will also be a short business meeting.

PHILADELPHIA SECTION

The regular meeting of the Philadelphia Section of the AACC was held at the Hahnemann Medical College on January 31, Cleon Gentzkow, M.D., Ph.D., Colonel, USAMC (ret) and Director of Bureau of Laboratories, Department of Health, Commonwealth of Pennsylvania, spoke on the various provisions of the new State Laboratory Law, (known as Act 389). He discussed the application forms which have been devised and the organization of the Department of Health which will administer the new law.

The provisions of the law were published in THE CLINICAL CHEMIST, Vol 3, No. 5 1951.

NEW YORK - METROPOLITAN SECTION

The New York Section held its meeting on TUESDAY, JANUARY 29, 1952, 8:30 P.M. at The New York Academy of Sciences, 2 East 63rd Street, New York. It presented a FORUM ON "THE PROFESSIONAL STATUS OF THE CLINICAL CHEMIST". The SPEAKERS were, Professor Halvor N. Christensen, Tufts College Medical School, Boston, Massachusetts. "The Training of Clinical Chemists at the Graduate Level"

Dr. Harry H. Sobotta, Mount Sinai Hospital, New York. "The Role of the Clinical Chemist in Medical Institutions"

Dr. Kurt G. Stern, Chairman of the Program Committee presided.
BOOK REVIEWS

THE LIPIDS, THEIR CHEMISTRY AND BIOCHEMISTRY. VOL. 1. CHEMISTRY.

Harry J. Deuel, Jr. xxiv + 982 pages. Interscience Publishers, Inc., 250 Fifth Avenue, New York 1, N.Y. 1951. $18.50. Reviewed by Harold D. Appleton, N.Y.U. Research Service. Lipid Chemistry, has been one of the neglected fields of chemistry and up until a few years ago, there were few adequate reference works in this field. With the focus on lipids as the new field of investigation in biochemistry, medicine, and even industrial chemistry, there has recently appeared several small volumes on certain particular phases of fats, waxes, sterols, fat-soluble vitamins and related compounds.

Prof. Deuel's work fulfills the need for a comprehensive volume on lipid chemistry giving the essentials of modern information in less detail than these highly specialized, monographs, but sufficient to serve the needs as a reference volume for the advanced student.

The book is slanted to the interest of materials present in or used by living material. The chapters given to the chemistry of the phosphatides, sterols, fat-soluble vitamins, etc., take more than half the volume. The first chapters give the chemistry of fatty acids and related compounds contained in fats, vegetable and animal oils and waxes.

For a work of this type, Prof. Deuel has made this book extremely readable, with good presentation in tables, charts, and excellent indexes. This book would be a welcome addition to both libraries and private collections.

A STUDY OF ANTIMETABOLITES.

It is only fitting that Dr. Woolley who has probably contributed more than anyone else to our present knowledge of antimetabolites should have written on this subject. In this book he very clearly presents the fundamental ideas and methods used in this still very new field of research. Many specific examples of the importance of antimetabolites in nutrition, enzymology, pharmacology and endocrinology are presented in a logical and readable manner. This book is very highly recommended as an addition to the libraries of all those who are interested in the field of biochemistry or one of the related sciences.

QUID NUNC?

An employment clearing house for clinical chemists has been established by the Southern California Section. All inquiries from interested prospective employees or employers should be directed to the chairman, Dr. Joe Goodman, Biochemist, Veterans Administration Hospital, Long Beach, California.

Saul L. Kanter has accepted the position of Biochemist of the clinical laboratory, Veterans Administration Hospital, Palo Alto, California. Mr. Kanter had been associated for a considerable period with Brentwood and Waisworth General Hospitals at the Veterans Administration Center, Los Angeles.

SITUATION WANTED

Ph.D. with excellent background in physiology, pharmacology and biochemistry; extensive experience in clinical and physiological procedures. Wishes position as Clinical Chemist. Write Box 123, New York 21, N.Y.
... of tremendous value...

"it will insure the success of the particular colorimetric procedure."

Stanley Levey, American Journal of CLINICAL PATHOLOGY

"... of invaluable help to all workers in clinical laboratory methods and we recommend it highly."

R. B. H. C., The LABORATORY DIGEST

"... adapted from the best or better procedures in the literature."

Roy W. Bonsnes, The CLINICAL CHEMIST

"The methods ... incorporate the most recent improvements and modifications of the original procedure."

Barry Commoner, SCIENCE

"... voluminous, practical laboratory manual ... valuable to any clinical laboratory."

Norris W. Rakestraw, The Journal of CHEMICAL EDUCATION

"... written in a very clear and concise way, with all the individual reagents and steps in the procedures numbered and well separated for easy reading."

M. G. Mellon, ANALYTICAL CHEMISTRY

Contains:

224 METHODS for the determination of

115 SUBSTANCES in various biological fluids; includes

115 CALIBRATION CURVES and

6 CHARTS. No fewer than

339 TESTS can be performed from the

728 loose-leaf PAGES of this manual, printed in large, clear type on paper especially selected to stand constant laboratory handling, and bound in a handsome, 7-ring, gold-embossed binder.

Never before has a book like this been published especially for clinical and biological technicians ... a book that will save hundreds of hours and hundreds of dollars in preparing most procedures for spectrophotometric chemistry.

Outlines in detail, a step-by-step procedure for performing each determination. All methods were painstakingly worked out on the Coleman spectrophotometer, but are adaptable to nearly every instrument marketed today, including Beckman, Böckh-Engler, Klett-Summerson, Leitz, Hellste, Cenco, Lumeter, and Evelyn.

Includes only the latest and most approved clinical methods ... accurate, easily applicable, simple. All methods were proved under actual working conditions by independent authorities.

Price $30.00 per Copy

Even if you use only a few of these many procedures, this manual will pay for itself many times over in a very short period. Order your copy now or send for FREE DESCRIPTIVE LITERATURE.

STANDARD SCIENTIFIC SUPPLY CORP., PUb. 34 West 4th Street, New York 12, N. Y.

Standard Scientific Supply Corp.
34 W. 4th St., New York 12, N. Y.

Please send... copies of Fister's Manual of Standardized Procedures for Spectrophotometric Chemistry at $30.00 each.

☐ Payment herewith ☐ Bill us

NAME ____________________________

ADDRESS _________________________

- 16 -
DR. PHILIP A. SHAFFER
NEW HONORARY MEMBER

Dr. Philip A. Shaffer, Distinguished Service Professor of Biochemistry, Washington University School of Medicine, St. Louis, Mo., was the recipient of Honorary Membership in the American Association Of Clinical Chemists at the Annual Dinner held Wednesday, April 2, in Milwaukee, Wis.

Dr. Shaffer can be considered one of the pioneers in clinical chemistry, having started his career as first assistant to Dr. Otto Folin at McLean Hospital, Mass., from 1906-1903. He received his doctorate in chemistry and biochemistry at Harvard in 1904 and was Instructor in pathological chemistry from 1907-1910. Dr. Shaffer held the chair in biochemistry at Washington University School of Medicine from 1910-1946 and served as Dean from 1937-1946.

Prof. Shaffer treated the members and guests with an informal account of the start of clinical chemistry at the beginning of the century. His recounting the first days with Dr. Folin brought very close the traditions established by the pioneers of the profession.

Dr. Armand S. Quick of Marquette University, well known for his studies of the clotting mechanism spoke on "Random Thoughts On Clinical Chemistry". (See text in this issue).

Dr. Hugh J. McDonald, newly elected Vice-President of the AACC and Professor of Biochemistry, Loyola University School of Medicine, spoke on parts of his program for education in clinical chemistry. Dr. McDonald is chairman of the AACC Committee on Education and said that his proposed education standards would make clinical chemistry an independent profession rather than one that is subservient.

MILWAUKEE HOST TO AACC MEETING

The Annual Meeting of the Association was held at the Hotel Schroeder, Milwaukee, Wis. on Wednesday April 2, 1952. The meeting was opened at 5:00 P.M. by John G. Reinhold, President, and those present included Albert E. Sobel, Vice-President; Max M. Friedman; National Secretary; Ellenmae Viernyver, Margaret Kaser, Chi Che Wang, Sam Belfer, John K. Kirby, Sr., Marie H. Carr, Lois Brunner, Joseph Benotti, Harold D. Appleton, Moritz Michaelis, Alex Kaplan, Clarence Cohn, Hugh J. McDonald, Grace Ballard, Margaret Perry, Marschelle H. Power, Santiago Aguado (by invitation) and Samuel Natelson.

The minutes of the 1951 Annual Meeting held in Boston, Mass. were accepted as previously published with one correction.

The annual report was presented by John G. Reinhold, President of the Association. In this report Dr. Reinhold reviewed the progress made during the past year and especially stressed the advances made by the legislative, educational and editorial committees. Major decisions made by the Executive Committee during the past year, such as that dealing with certification of clinical chemists, were reviewed.

The National Secretary presented to the membership a recommendation of the Executive Committee that the annual dues for 1953 be set at $7.50 for full members, and $4.00 for associate members, the increase over the 1952 dues to be applied directly to the newsletter. This increased income by the newsletter would permit the editorial staff of THE CLINICAL CHEMIST to extend its activities by additional coverage of scientific articles. This recommendation was presented as a motion by Sam Belfer, and after some discussion the motion was approved.

The need for a journal of clinical chemistry was generally acknowledged, and the matter discussed at great length. Various opinions were expressed, including the suggestion that the Association consider undertaking such a journal in the immediate future. No definite action was taken at this time.

Dr. Margaret Kaser, Wood, Wisc. made all the arrangements for the meeting and the Association Dinner. Dr. Kaser received the thanks of the entire membership for her work in providing for the excellence of the Fourth Annual Meeting.
THE SECRETARY REPORTS

It may be noted from the minutes of the Fourth Annual Meeting, held in Milwaukee, that the dues for 1953 have been increased to $7.50 for full members and $4.00 for associate members. This was adopted by the membership with the assurance that the increase over 1952 dues would be applied to THE CLINICAL CHEMIST, so that the newsletter may extend its services for more adequate scientific information.

Perhaps a review of the fiscal status of the Association might be of interest at this time. In the minutes of the third meeting of the Organization Committee held in New York City on February 5, 1949, it is found: "The membership fees for 1949 were set at $5.00 for full members and $2.00 for associate members." At the same meeting the Constitution was adopted with Article XIII: "An annual assessment of dues for the following business year shall be determined by a majority vote of the voting members present at the Stated Annual Meeting." At that time there were two thoughts; one, that the dues should be set at the lowest possible level compatible with adequate operation of the Association; and the other thought was that any changes in annual dues should come only with the approval of the membership.

For two years we functioned with these minimal dues, which were more than enough, as evidenced by the fact that the Association has from the beginning been able to maintain a bank balance. It might be parenthetically mentioned that we have been continuing to operate in the past, and hope to continue to operate in the future on this basis, only because many individuals in the Association have been contributing freely and willingly of their time and efforts.

The advent of the newsletter, which three years ago was not anticipated in its present form, made it necessary for the members to vote an increase in dues at the Third Annual Meeting in Boston. The printing and distribution of the newsletter, directory, and ballots require about 60 per cent of our income. Another 15 per cent is returned as a subsidy to the local sections. This permits about one-third of our income, or about $700 per year at the current rate, for all the other activities of the Association. Part of this unspent $700 per year is reflected in the bank balance that is gradually accumulating.

THE CLINICAL CHEMIST in its present form has been an excellent medium in bringing to us the professional activities of clinical chemistry. Having started out with 4 to 5 pages of a small sheet, it now has reached 12 to 16 pages in its present format. The advertising income covers only a fraction of the cost, since the newsletter accepts ads with great care, and the ethics of our advertising policy is beyond question.

There have been many inquiries from our members, and much interest, concerning a journal of clinical chemistry. This matter has been given a great deal of thought by the Executive Committee, and the opinion has invariably been that such a project should not be hastily undertaken. This takes us back again to the increased annual dues. The newsletter will be allotted an additional $100 per issue, beginning in January, 1953, so as to permit the appointment of scientific editors and scientific sections to cover abstracts, reviews, and other items of interest to clinical chemists. It is sincerely hoped that this will meet with the approval of the entire membership. To do otherwise might retard the natural growth of THE CLINICAL CHEMIST.

Respectfully submitted,
Max M. Friedman, National Secretary
Dear Sir:

The members of the Southern California Section of the AACC are very concerned about the appearance in THE CLINICAL CHEMIST of ill-chosen remarks about the medical profession. A good example of this is found in the March 1952 issue in Dr. Sobotta's talk on "The Role of the Clinical Chemist in Medical Institutions."

This publication contained a number of remarks which can do nothing but bring on the animosity toward the medical profession. Since THE CLINICAL CHEMIST is the official organ of the AACC these comments are construed as the general attitude of the organization. This is even more true when such comments are made by a past president of the Association. How would the chemist feel if he read in the pages of the Journal of the American Medical Association that he was a "menace" in the modern hospital?

There is another aspect of Dr. Sobotta's talk with which we take definite issue. In the last paragraph he says, "we will, in the more distant future, not only interpret the results for the clinician, but we will treat the patients whose disease is of a chemical nature." It is our impression that the clinical chemist should remain an adjunct to the medical profession and that under no circumstances should he be encouraged to carry on the practice of medicine. His function is to aid and supplement the doctor of medicine when his services are requested. The treatment of patients should be limited solely to the doctor of medicine, and if a chemist feels that desire he should enroll in a medical school.

One of the primary aims of the AACC should be to promote good relations with the medical profession. This can best be done by establishing clinical chemistry as a profession. Every effort should be made to raise the standards of clinical chemistry and of the clinical chemist. It is of the utmost importance to remember that it is not our aim to practice medicine but to help those who do. The treatment of the patient is legally and rightfully in the hands of the doctor of medicine.

It seems to us that our aim could better be accomplished by more careful editing of the material published in THE CLINICAL CHEMIST. Certainly, it is important that our members be allowed to express themselves freely. However, if criticisms of the medical profession are to be made, they should at least be done in a dignified and reasonable manner.

Sincerely yours,

Arnold C. Ware
Richard J. Henry
Kenneth D. Johnson
Executive Committee
Southern California Section
AACC, California

A.H.T. CO. SPECIFICATION
RUBBER STOPPERS HR-108

IN OUR STOCK FOR IMMEDIATE SHIPMENT

Semi-Solid. Vertical cross-section showing recessed top.
One-Hole. Vertical cross-section showing one Hough fusiform opening.
Two-Hole. Vertical cross-section showing two Hough fusiform openings.

RUBBER STOPPERS HR-108, A.H.T. Co. Specification. Made of a bloomless, black, heat-resisting composition with low sulfur content and superior aging quality. The designation HR-108 originates from "Heat Resisting" and the specific gravity of the composition, i.e. 108. The stock possesses great elasticity, contains more than 70% pure virgin gum*, is free from surface sulfur and contains less than 0.75% free sulfur; no reclaimed rubber is used. Will withstand temperatures up to 110°C and laboratory tests indicate a useful life approximately five times that of ordinary stoppers.

The semi-solid stopper is recessed and offers the advantage of greater depth of seal, eliminates popping out, facilitates removal, reduces time required for special boring and requires less rubber than the usual solid stopper. The recess also forms a well for lubricants when using a cork borer.

In the one and two-hole stoppers, the usual cylindrical bore is replaced by fusiform openings with funnel tops. They offer the advantage that tubing can be inserted more readily and with less danger of personal injury than in the usual openings—particularly by students. They also permit the insertion of larger tubes than is possible with the usual openings.

Available in sizes 00 to 15, inclusive. Current prices and more detailed information sent upon request.

*Subject to requirements of NPA Reg. M-2, "Rubber."

ARTHUR H. THOMAS COMPANY
LABORATORY APPARATUS AND REAGENTS
WEST WASHINGTON SQUARE
PHILADELPHIA 5, PA.

Teletype Services: Western Union WUX and Bell System PH-72
REPORT TO THE ASSOCIATION
by
John G. Reinhold, President
Delivered at the Annual Meeting in Milwaukee, April 2, 1952

As the Association starts its fifth year it also enters new activities and undertakes new responsibilities. Growth in membership has been steady as new names are added to the list each month. Of even greater importance is the loyalty of the old members. It is gratifying that some who have disagreed strongly on questions of policy have remained members, regardless, choosing to work within the Association for the views they uphold.

The current year has obliged the Association to decide whether it should uphold the program of the American Board of Clinical Chemistry or undertake independently the evaluation and approval of clinical chemists. The shortcomings of existing Boards in the clinical specialties, presented eloquently by Bean in a recent article, illustrate the nature of the misgivings held by some members of the Association. Another group of our members became apprehensive because of the forbidding legal phraseology of the Board's Charter and By-laws. A Board with some of its membership not closely identified with clinical chemistry undertaking to assert the sweeping authority claimed in these documents thus appeared to endanger the standing of many working in the front line of clinical chemistry, and to threaten that standards applied would not reflect the needs of clinical chemistry as the profession is practiced. The fears concerning the Board have been largely dispelled by its recent statement and by the reassurances given privately by its members. Nevertheless, the Executive Committee thought it best that each member of the Association decide for himself whether to apply to the Board for certification.

The problem of the Board and the Association's policy toward it occupied the attention of the officers and the Executive Committee for much of the year and excluded thought and action on many other questions. Yet it was important to examine this problem with the thoroughness it demanded. My own feeling is that the Board is and has been trying to the best of its ability to serve clinical chemistry. It is my intention to apply for certification, and I hope others who are eligible will do likewise.

One of the more important developments of the year for clinical chemists and others specializing in the science allied to medicine was the introduction and passage of an act for the regulation of analytical, biochemical, and biological laboratories in Pennsylvania. Poorly qualified laboratory directors and marginal laboratory enterprises are prevented from endangering the public or engaging in unethical practices to the detriment of laboratories maintaining high standards. The right of qualified scientists not possessing medical degrees to operate analytical, biochemical and biological laboratories in Pennsylvania is clearly established by this act. Steps to enforce it are proceeding effectively under the critical but friendly supervision of Dr. Cleon Gentzkow, Director of the Pennsylvania State Laboratories in Philadelphia. The advantages of the Pennsylvania Act are partially offset by its limitations and shortcomings. Requirements for approval are far too low and coverage might advantageously be extended to hospital laboratories. However, the latter are free to participate in the screening and inspection programs voluntarily, and it is to be hoped that they will do so. The Association supported the passage of this act, although with reservations.

Legislation similar to the interests of clinical chemists continues to be a threat in several areas. Efforts, well intentioned but without results, are being made to establish by law the qualifications of the personnel of clinical laboratories. These attempts narrowly assess competence on the basis of technical knowledge in all branches of laboratory work, with no, or grossly inadequate, considerations for scientific capabilities or ability to conduct research. Another objectionable type of bill attempts to define all laboratory work as the practice of medicine. Surely no more effective method could be devised to discourage recruitment of chemists for hospital and other clinical chemistry laboratories than the knowledge that efforts are being made to restrict opportunities in this way. Happily, no such Bill has been introduced to my knowledge since the unamended attempt several years ago in New Jersey.

One of the more encouraging signs of progress in the field of legislation is the evidence that unilateral attempts at legislation are giving way to cooperative efforts. Lawmaking in any field affects many individuals and the decent and democratic approach is to consult all of the various parties interested. This is particularly to be expected of the professions where honor and courtesy are traditional.

Scientific activities related to clinical chemistry are being encouraged by the Association. Each of the five local sections has regularly held scientific sessions. A program of papers dealing with research in clinical chemistry has been a part of the activities of each annual meeting.

A sixth local section now being organized in the Washington-Baltimore-Richmond region, will hold its first scientific program in May.

THE CLINICAL CHEMIST has served the Association well since its founding, and during the current year the abundance of important news has necessitated an increase in size. The resulting increase in publication costs has been only partially offset by additional advertising. Finances of THE CLINICAL CHEMIST will continue to create problems for the Association, and need for its expansion and plans to broaden its scope are responsible for the recent decision to increase dues of members. Decisions concerning editorial matters have been almost entirely the responsibility of the Editorial Committee, acting in some instances in consultation with the Editorial Board. This plan, instituted during the latter part of my predecessor's term, has given the editors greater freedom. This they have used to good advantage.

Members and others have occasionally complained about statements made by correspondents in THE CLINICAL CHEMIST. It is the policy of the Association to encourage expressions of opinion. Each of us has an obligation to place his criticisms and dissent on record. A flow of ideas through THE CLINICAL CHEMIST is perhaps the best of ways to enable the making of sound decisions concerning the Association and clinical chemistry.

Dr. Nelson Young accepted the Chairmanship of the Committee on Standards last fall. That this committee has failed to receive attention or interest is not because of lack of effort. Your president has been assisted by your committee in the formulation of a statement of standards, and in the preparation of a draft of the code of ethics. We have the report of the Committee on Education prepared by Dr. Mc Donald and published recently in THE CLINICAL CHEMIST. The report of the Committee on Education prepared by Dr. Mc Donald and published recently in THE CLINICAL CHEMIST has been received with interest. It is hoped that the committee will continue its work and that the Association will continue to support it.

The committee editing the first volume of methods in clinical chemistry, headed by Miss Reiner, is approaching the completion of its work. Some delays have been caused by the unique plans being used, which requires that each method be tested independently by two laboratories. The failure of either of the latter to obtain the expected results in some instances has necessitated some changes in the procedures of the committee and in the supplement to the report.

The committee editing the first volume of methods in clinical chemistry, headed by Miss Reiner, is approaching the completion of its work. Some delays have been caused by the unique plans being used, which requires that each method be tested independently by two laboratories. The failure of either of the latter to obtain the expected results in some instances has necessitated some changes in the procedures of the committee and in the supplement to the report.
MINUTES OF
EXECUTIVE COMMITTEE
April 1, 1952

The Executive Committee met at the
Hotel Schroeder in Milwaukee, Wis., on
Tuesday, April 1, 1952. Those present in-cluded
John G. Reinhold, President; Albert
E. Sobel, Vice-President; Max M. Friedman,
National Secretary; George T. Lewis,
Marechelle H. Power, Ellenmae Viergiver,
Harold D. Appleton (by invitation), Margaret
Kasee (by invitation), and Hugh J. McDon-
ald (by invitation).

Marechelle Power reported for the Ed-
torial Advisory Committee of THE CLIN-
ICAL CHEMIST and pointed out the man-
ner in which it functioned during the past
year. The Committee did not feel that any
major changes were necessary at this time.

Louis B. Dotti reported for the Com-
mittee on Membership and also submitted a Treas-
urer's report covering the assets of the
Association as of March 20, 1952.

Hugh J. McDonald reported for the Com-
mittee on Education and summarized the
recommendations previously published in the
newsletter.

Max M. Friedman proposed that the annual
dues for 1953 be set at $7.50 for full
members and $4.00 for associate members, the
increase over 1952 to be allocated to THE
CLINICAL CHEMIST for expansion of ser-
vice by the newsletter and to allot in-
creased space for scientific articles. After
discussion, it was voted that this recom-
dendation be made to the membership at
the annual meeting.

Various requests have been made by
manufacturers and distributors for the mem-
bership list of the Association. Since it
was felt that the membership list is an asset
of the Association, it was moved, sec-
onded, and passed that the National
Secretary be authorized to permit the use of
the list by commercial organizations for
circulating purposes at a fee of $50.00
per year.

Colonel Monroe E. Freeman of Wash-
ington, D.C. was selected as the representa-
tive of the Association to the International
Committee on Clinical Chemistry. The dele-
gates to the Congress of Clinical Chemistry
to be held in Amsterdam, Holland during
1953 include Miriam Reiner, Warren M.

The choice of time and place for the an-
nual meetings in 1953 was discussed at
great length. It was felt that the previous
meetings in association with the American
Chemical Society were very successful. It
was also the majority opinion that the next
meeting should be held in the fall of 1953
at the time and place of the 124th National
meeting of the American Chemical Society.

The standardization of methods for the
detection of poisons was discussed. Two
viewpoints were presented; one that the
present manual on methods sponsored by
the Association should include a section
on the analyses of drugs and poisons; and
the other suggestion was that a separate
manual should be attempted. These possi-
bilities will be further explored.

The remainder of the meeting was de-
voted to a continued study of the proposed
Code of Ethics. Since this project could
only be partially completed, it was de-
cided that the Executive Committee meet
again in New York on Monday, April 14, 1952.

Respectfully submitted,

Max M. Friedman, National Secretary

The Executive Committee met at the
Medical Arts Center Hospital in New York
City on Monday April 14, 1952 at 8:30 P.M.
Those present included John G. Reinhold,
President; Albert E. Sobel, Vice-President;
Max M. Friedman, National Secretary; Louis
B. Dotti, National Treasurer; Harry Sobotka,
Ellenmae Viergiver, Oliver H. Gaebler
(by invitation), Samuel Natelson (by invita-
tion), and Miriam Reiner (by invitation).

The minutes of the previous meeting in
Milwaukee were accepted without correction.
The Executive Committee for 1952-53 and the Nominating Committee for 1952-53,
selected by the votes tabulated on April 12,
1952 by tellers Albert Hanck and Andre
C. Kilbrick were presented. The Executive
Committee will consist of Albert E. Sobel,
President; Hugh J. McDonald, Vice Presi-
dent; Max M. Friedman, National Secretary;
Louis B. Dotti, National Treasurer; Arthur
Knuoss, Marechelle H. Power, John G.
Reinhold, Harry Sobotka, and Arnold G.
Ware. The Nominating Committee will con-
sist of Joseph Benotti, Louis B. Dotti,
Samuel Natelson, Miriam Reiner, John G.
Reinhold, Harry Sobotka, and Warren M.
Sperry.

Oliver H. Gaebler, by invitation of the
Executive Committee and as a member of the
Association, participated in a dis-
cussion of the relationship between the
Association and the American Board of
Clinical Chemistry. Dr. Gaebler outlined
the serious problems that necessarily con-
front the Board in its initiation of the certifying program. It was indicated that
active cooperation of the Association
would be welcomed by the Board.

Miriam Reiner reported on the proposed
manual of methods in clinical chemistry.
Max Reiner was authorized to submit the
manuscript, a critical survey of thirteen
methods, for publication.

The remainder of the meeting was de-
voted to a continued study of the proposed
Code of Ethics.

Respectfully submitted,

Max M. Friedman, National Secretary
Random Thoughts on Clinical Chemistry
by
Armand J. Quick, Marquette University School of Medicine, Milwaukee, Wisconsin

Clinical chemistry had a long latent period and only in recent years has the spectacular tempo of its development set in. Centuries passed from the time the alchemist philosophized on the appearance of a specimen of urine to the period when the qualitative testing of urine had any semblance of a scientific approach. But only after the pioneer work of Folin, Benedict and Van Slyke did clinical chemistry as it is recognized today come into existence.

With the development of the field of "blood chemistry", came the recognition that a chemical section of the clinical laboratory should be an essential part of the hospital and that it had to have on its staff someone who had basic training in chemistry, in the beginning when the techniques were simple, individuals with minimal chemical skill and knowledge could meet the requirements. As the science of biochemistry and its application to clinical chemistry medicine advanced, the basic requirements of the laboratory technician in chemistry increased. Today the development of clinical-chemical technology has reached a level at which only skilled and well-trained chemists can meet the demands.

One of the pressing problems that confront the hospital is whether its laboratory should keep abreast with the newer developments or whether it should continue to limit its productivity to its present physical equipment and its personnel. Generally the solution arrived at is a compromise, but irrespective, if any change is initiated, it is likely to be in the direction of chemistry since the most important advances are in this field. Any laboratory, therefore, that is following the current trend of expanding its facilities will require among its personnel trained chemists who meet the requirements of the new specialty, clinical chemistry.

What is required of the clinical chemist? No doubt his most important task is to carry out technical chemical procedures that cannot be entrusted to the clinical technologists. With the advent of endocrinology and its closely allied fields such as fluid and electrolyte balance, as well as the growth of other phases of physiology, many new diagnostic procedures have been developed and new instruments have been introduced. Only an expert can be entrusted to obtain reliable results. But the task of the clinical chemist is not limited to complex tests and apparatus. There is a crying need that simple chemical tests be supervised so that they are done properly.

Due no doubt to the lack of personnel with thorough training in chemistry many useful tests are either soon dropped because of technical difficulties or are never introduced into the clinical laboratory. The hippuric acid synthesis for liver function may be cited as an example. This test is based on sound chemical and physiological principles, and has been found valuable by a number of authoritative investigators in large clinics. It offers a quantitative approach to the functional capacity of the liver and thus yields information not obtainable by the more popular empirical tests. With proper chemical supervision a test such as this can successfully become one of the routine procedures.

There is a definite need for the clinical chemist to exert his influence to improve techniques and to aid in the standardization of many of the common laboratory tests. One may select the clotting time as a good illustration. While the clinical value of this test is a moot question, one can unequivocally state that the manner in which the procedure is carried out in most laboratories makes the results utterly worthless. Almost invariably the test is done at room temperature. Yet no one who has a rudimentary knowledge of chemical reactions would carry out a test which is so markedly influenced by temperature under conditions as vague as room temperature. One might as well work out winter and summer normals to interpret the result. Certainly in an age in which the electron is commonplace, the constant temperature water bath should occupy a place in nearly every laboratory. But even more simple, the thermos bottle can serve as a cheap and convenient portable water bath. If the exact principles of chemistry were applied to as simple a test as the clotting time, the medical literature would be spared the numerous worthless papers based on untrustworthy clotting times. Too often wide ranges of normal values are blamed on biological variations when as a matter of fact the true cause is faulty technique. Thus, the normal prothrombin time if carried out according to the procedure as originally described is 12 seconds, yet numerous studies are reported based on prothrombin time normals ranging from 10 to 20 seconds. That these values are the result of defective technique can readily be proven.

At the request of the writer a graduate student in chemistry without any experience in blood clotting obtained a value of 12 seconds on a sample of normal blood the very first time he performed it. He prepared his reagents and did the test entirely from the written directions and obtained no personal supervision. From this it seems apparent that if a clinical chemist were in charge of procedures such as the prothrombin time, the confusion and chaos would quickly be cleared.

The new national officers and Executive Committee of the American Association of Clinical Chemists will take office July 1, 1952. They will serve until June 30, 1953. The officers are:

President: Albert F. Sobel
Vice-President: Hugh J. McDonald
National Secretary: Max M. Friedman
National Treasurer: Louis B. Dotti

Members of the newly elected National Executive Committee are: John G. Reinhold, Harry Sobotka, Marchelle H. Power, Arthur Knudson, and Arnold G. Ware.

Ballots submitted by the membership for the Nominating Committee were tabulated on April 22, 1952. Those selected include: Joseph Benotti, Louis B. Dotti, Samuel Nutelson, Miriam Reiner, John G. Reinhold, Harry Sobotka, and Warren M. Sperry. The tellers for this ballot were Albert Hunek and Andre C. Klibric.

The Nominating Committee shall hold office for one year, until April 12, 1953. According to Article IX (b) of the Constitution; "The Nominating Committee shall deliver to the Secretary of this Association a list of persons nominated by them for election as officers and members of the Executive Committee not later than sixty days before the Stated Annual Meeting of this Association."

Members of the Association may propose any candidate of their choice by writing to the Nominating Committee.
ABSTRACTS OF PAPERS ON CLINICAL CHEMISTRY
Presented in Cooperation with The Division of
Biological Chemistry ACS as part of the Fourth Annual Meeting AACC

Marchelle H. Power, Chairman

STANDARDIZATION OF THYMOL TURBIDITY MEASUREMENTS. John G. Reinhold, Pepper Laboratory of Clinical Medicine, University of Pennsylvania, Philadelphia, Pa.

Considerable divergence exists in values assigned thymol turbidity readings in different laboratories because of the inadequacy of turbidity standards used for calibration of photoelectric photometers. Tests of various sulfate suspensions and copper sulfate or Evans blue dye solutions have shown each to be unsatisfactory. However, comparative tests of visual and photometric turbidity measurements show the latter to be far superior if properly standardized.

The use of suspensions of borosilicate glass for this purpose was suggested by Charles Jones (personal communication). Colloidal suspensions of glass are more stable, easily prepared, and in the photometer devised only slightly from a linear relationship between absorbance and concentration. However, the standardization by some independent method is required. Samples of a glass suspension were distributed to 55 laboratories and the thymol turbidity values reported were evaluated statistically to provide a basis for calculation of a factor for converting absorbance of the standard to units of thymol turbidity. The results of this survey and recommendations concerning the calibration of glass suspensions for turbidity tests are described.

RAPID PHOTOMETRIC ULTRAMICRO-METHODS FOR THE DETERMINATION OF NITROGEN, IRON, AND PHOSPHORUS FOLLOWING KJELDAHL DIGESTION OF BIOLOGICAL MATERIAL. John C. Claudius and George T. Lewis, Medical Research Foundation of Dade County, Miami, Fla.

Digestion is carried out in Kjeldahl tubes graduated at 1 ml. Liquid samples are measured in micropipettes; solids are weighed on a simple torsion balance made from a fine glass thread which is the result of drawing out a 2-mm. diameter glass rod. Weights are determined as deviations of this thread measured on a scale equipped with a vernier. The sample is digested with 7.5 N sulfuric acid with the addition of small drops of Perhydrol. When digestion is complete, the reagents necessary to color development are added and dilution is made to the mark with water. Readings are made in a Beckman Model DU spectrophotometer using ultramicro cells.

THE DETERMINATION OF SULFHYDRL AND POTENTIAL SULFHYDRL GROUPS IN BLOOD AND ITS FRACTIONS. Marie H. Berg, Department of Dermatology and Syphilology, University Hospital, Ann Arbor, Mich.

The red SH-reagent, 1,4-chloromercuri-phenylazo-2-sulfophenyl benzene and p-nitroanilides, J. Am. Chem. Soc., 70, 3522 (1948) which was utilized by Flesh and Kun to determine SH-groups in tissue extracts, Soc. Exptl. Biol. Med., 74, 249 (1950) and histological sections, was used to determine also potential SH-groups in blood and its fractions. While the mercury compound forms an insoluble precipitate with glutathione, it does not react with sulfhydryl components not containing amino groups.

The oxidized sulfur is reduced with the help of zinc granules and hydrochloric acid and by working with very small amounts of vital material and comparatively large amounts of organic solvent complete deactivation of the proteins is ensured.

The method is based on measuring the disappearance of color from the solvent, can be easily used with any spectrophotometer, and lends itself easily to application in any clinical or research laboratory.

METHOD FOR DETERMINATION OF THE WATER-SOLUBLE PHOSPHORIC DIESTERS OF SMALL MOLECULAR WEIGHTS (EXCLUDING CARBOHYDRATE ESTERS) IN TISSUES, Gerhard Schmidt, Lowell Greenbaum, Pierre Fallot, and S. J. Thannhauser, Research Laboratories, Boston Dispensary, and Department of Physiology, Tufts Medical School.

A procedure for the determination of glycerolphosphorylcholine in tissues was published earlier in these laboratories. Federation Proc., 10, 244 (1951). A method for the quantitative determination of the total phosphoric acid diester fraction was developed on the basis of its complete resistance against prosthetic phosphatases. A neutralized protein-free filtrate was prepared with copper sulfate and alkali to remove interfering substances (nucleotides, hexosephosphates). The filtrate was neutralized with oxalic acid, and the supernatant divided into three aliquots, A, B, C. A was incubated with phosphatase; B was hydrolyzed with N hydrochloric acid for 20 minutes, neutralized to pH 5.6, and subsequently incubated with phosphatase.

The amounts of inorganic P in A and B were determined. C served for the estimation of the total phosphorus. C-A represented the amounts of diester phosphorus. The inorganic phosphorus in B must be equal to the total P, since the phosphoric acid diesters of tissues are transformed into phosphoric acid monooesters by short acid hydrolysis.

APPLICATION OF SENDROY'S IODOMETRIC CHLORIDE TITRATION TO SOLIDS. Eugene L. Kanabrook and Chi Che Wang, Biochemical Research Laboratory, V.A. Hospital, Hines, Ill.

The general accepted methods for chloride determination in solids are laborious and require a large quantities of material. The proposed method is simple and may be applied to milligram quantities. If sufficient material is available, a sample of 5 or more grams is carefully and quickly freed from fatty and connective tissues with a razor blade on a piece of glass. It is then cut into thin slices of about 2-mm. thickness and transferred into a microhomogenizer. The well homogenized material is immediately placed in a weighing bottle and samples of 0.2 to 0.7 gram are quickly weighed by difference into flasks containing phosphoric acid.

If the material is less than 0.7 gram, it is crushed in an agate mortar and immediately transferred into a flask containing phosphoric acid. The tissue is then thoroughly mixed with the flattened end of a glass rod and the mixture is filtered or centrifuged. The filtrate is treated according to Sendroy's iodometric method for chlorides.

Accuracy of the Method:

- Average recovery of standard NaCl = 101.1%
- Average recovery of NaCl added to bread = 103.8%
- Average recovery of NaCl added to human tissues = 100.6%
- Average recovery of NaCl added to meal = 98.5%

Average deviation from A.O.A.C. method = 1.3%

FRACTIONATION OF AN ACTH PREPARATION BY IONOGRAPHY. Hugh J. McDonald and Edward F. Marbach, Department of Biochemistry, Graduate School and Stritch School of Medicine, Loyola University, Chicago, Ill.

The technique of ionography, or electromigration on wet paper surfaces, was utilized to fractionate an ACTH preparation obtained from pig pituitaries. With ACTH as the migrant, it was found necessary to develop a suitable color test, inasmuch as none of the standard tests for amino acids or proteins were satisfactory. A modification of the bromophenol blue technique was devised. With a veronal buffer of ionic strength 0.015 and a pH of 5.5, and applying a potential of 6 volts per cm for 3 hours, the ACTH preparation separated into three fractions: a heavy-staining fraction, A, which moved to the negative pole, a light-staining fraction, B, which moved to the positive pole, and another heavy-staining fraction, C, which did not move. As the pH of the buffer used to saturate the paper was increased to 6.0 to 6.6, the mobility of the heavy-staining fraction, A, was found to approach zero, showing that its isoelectric point was in this region. Most of the biological activity, as determined by the adrenal ascorbic acid depletion test, was found to be in this frac-
tion. The isoelectric point of the light fraction, B, which was found to have very little ACTH activity, was shown to be in the region of 4.5 to 4.8.

PREPARATION AND METABOLISM OF C14- CARBOXYL SALICYLIC ACIDS AND GENETIC ACIDS. Saul Rosenman, Robert Abeles, and Albert Dorman, Departments of Pediatrics and Biochemistry, University of Chicago, Chicago, Ill.

C14-carboxyl salicylic acid was prepared by reaction of p-carboxyphosphorylmethylbenzene with C14O2, followed by hydrolysis of the methyl ether with hydrobromic acid. C14-carboxyl genic acid was prepared by reaction of p-carboxyphosphorylmethylbenzene with butyl lithium, followed by reaction with C14O2 and hydrolysis of the resulting dimethyl ether with hydrobromic acid. Vacuum sublimation yielded analytically pure genic acid. It seemed possible that part of the salicylic acid genic acid given to animals might be completely metabolized to carbon dioxide. In view of (a) the fact that the rate of part of administered salicylic acid is unknown [Kopp, E.M., and Coburn, A.F., J. Biol. Chem., 145, 549 (1942); Rosenman, S., and Dornman, A., J. Biol. Chem., 192, 105 (1951)]; (b) the structural relationship between genic acid and homogenetic acids; and (c) the fact that salicylic acid is partially converted to genic acid. The administration of the radioactive compounds to mice resulted in the excretion of only small amounts of the injected radioactivity in the respiratory carbon dioxide. The results obtained with salicylic acid agree with reported studies [Schonley, R.W., Arch. Biochem., 28, 371 (1950); Apel, W. L., et al., J. Pharm. Exp. Therap., 102, 150 (1951)]. These data indicate that genic acid is not metabolized by the same mechanism as is homogenetic acid.

SULFUR METABOLISM DURING THE HEALING OF EXPERIMENTAL WOUNDS. Martin B. Williamson and Herbert J. Fromm, Graduate School and Stritch School of Medicine, Loyola University, Chicago, Ill.

Wounds heal more rapidly in animals fed a high-protein diet than in those on a low-protein diet. It had been shown that the methionine content of the diet has a marked influence on the rate of healing of experimental wounds. The effect of different levels of protein intake on the healing of wounds appears to be due to the level of methionine ingested, rather than the protein, or total nitrogen intake.

When wounded rats are fed a 5% casein diet supplemented with either L-cystine or DL-methionine, containing equivalent amounts of sulfur, they show an identical healing index, which is significantly greater than that found in the control rats fed an unsupplemented 5% casein diet. The healing index is measured in terms of the rate of increase in tensile strength of the healing wound with time. The healing index appears to vary directly with the amount of amino acid sulfur retained by the rats. On the other hand, nitrogen retention does not show this correlation. During healing, the ratio of amino acid sulfur to amino acid nitrogen retained by the wounded animal increases. This excess sulfur is evidently required for the greater demands of the healing wound tissue. The amount of extra sulfur retained is also correlated with the healing index.

COMPOSITION OF BONES, TEETH, AND RELATED MINERALS IN RELATION TO FLUID COMPOSITION AND DIET. Albert E. Sobel, Albert Honack, and Albert Hirschman, Jewish Hospital of Brooklyn and State University of New York, College of Medicine.

Young cotton rats and albino (Wistar) rats were placed on high calcium-low phosphorus and high phosphorus-low calcium diets. The CO2PO4 ratios of the enamel and dentin of the molars and incisors and that of the bone was much higher on a high calcium diet than on the high phosphorus diet. These changes in CO2PO4 ratios of teeth and bones were related to changes in CO2PO4 ratios of blood serum. On corresponding diets, the CO2PO4 ratios of bones and teeth in the cotton rats were lower than in the albino rats.

C2HPO4 placed in solutions at pH 7.4 containing calcium, phosphorus, and carbonate ions was converted to apatite. The CO2PO4 ratios of the solid thus formed are related to the CO2PO4 ratios of the solution. These studies correlate in vivo and in vitro phenomena.

As carbonate can be preferentially dissolved by weak acids, one would predict increased caries susceptibility with high CO2PO4 teeth. Preliminary studies to date indicate that both the incidence and severity of caries are about three times as high in cotton rats with high carbonate teeth.

VITAMIN A LEVELS DURING THE HUMAN MENSTRUAL CYCLE. Pennie A. Lipschitz and Albert E. Sobel, Department of Biochemistry, Jewish Hospital of Brooklyn.

Fasting serum vitamin A levels were followed over every other day in nine healthy women between the ages of 13 and 24, for at least two complete menstrual cycles. Definite cyclic trends were manifested. Vitamin A concentrations dropped to a low level during menstruation, rose to a peak near the middle of the cycle, and thereafter proceeded to drop until low levels occurred during the next menstrual period. This trend was more marked in three subjects who received large doses of vitamin A several weeks prior to testing.

Observed changes may be explained by the fact, reported in several papers, that serum vitamin A levels change after the administration of hormones. During the menstrual cycle there are changes in hormonal secretion which may regulate the serum vitamin A levels in the same fashion as do injected hormones.

Our milk studies [Am. J. Diseases Children, 80, 932 (1950)] indicated that the transportation of vitamin A across membranes in the body is favored by high blood levels. Blood level fluctuations during the menstrual cycle may be the transportation mechanism for fulfilling the vitamin A requirements of the endometrium and involving corpus luteum.

ADRENAL IMMATURE AS A COMMON FINDING IN THE PREMATURE AND FULL-TERM INFANT. Samuel Natelson, Rockford Memorial Hospital.

Evidence is presented that deoxy-cortisone acetate is effective in maintaining sodium and balance in immature infants. Cortisone appears to be ineffective in this respect. Chemical procedures are described for the diagnosis of adrenal immaturity in infants by analysis of heel blood. Procedures are described for estimating and following daily pH, sodium, potassium, chloride, hematocrit, sugar, urea, and protein levels from birth. Adrenal immaturity is characterized by a high hematocrit which persists for many days after birth, a high potassium level, and lowered sodium and chloride levels in spite of sodium chloride administration, calculated to correct chloride deficiency.

There is apparently no direct relationship between adrenal immaturity and birth weight. Adrenal insufficiency has been found in newborns weighing up to kg. at birth. Some weighing as much as 1500 grams have not shown this abnormality. However, adrenal insufficiency is most commonly found in the group weighing 2 kg. or less. In this weight group 8 out of 26 studied showed this abnormality.

THE EFFECT OF ACUTE CORONARY OCCLUSION IN DOGS ON THE CHEMICAL CONSTITUENTS OF THE HEART. A. G. Mulder, Charles D. Froster, William Marshall, and Blanche Tigeman, Department of Physiology, Stritch School of Medicine and Graduate School, Loyola University, Chicago 12, Ill.

The chemical changes occurring in an occluded area of the heart are of considerable theoretical importance as an index of the status of the injured tissue. In these experiments the thorax and pericardium were opened and the arteries were tied off, so that the anterior descending coronary artery was ligated. The occlusion was maintained for varying periods, ranging from 2 to 8 hours. At the termination of this time the heart was rapidly removed and frozen. A sample from the occluded area was removed and analyzed, and the results compared with a sample taken from the nonoccluded portion of the same ventricle, and also with samples taken from control ventricles. In the occluded area there was a marked diminution in the concentration of adenosine polyphosphate and a variable decrease in phosphocreatine concentration. A marked decrease in glycerogen content and an increase of lactate acid occurred. The sodium concentration rose and the potassium concentration fell. The significance of these results is discussed.
LOCAL SECTION NEWS

AAHC SECTION FORMED IN WASHINGTON, D.C. AREA

Fourteen members and guests of the American Association of Clinical Chemists, representing 12 different laboratory interests in the Washington, Baltimore, Richmond area, met informally with Dr. John Reinhold at Walter Reed Army Medical Center on February 18th to discuss the organization of a Washington section of the A.A.C.C. Dr. Reinhold briefly outlined the objectives, activities, and experiences of the Association. Informal discussion resulted in general agreement on a formal organizational meeting and a scientific program for late April or early May. All A.A.C.C. members of the area, now listed in the Directory, will be notified when arrangements have been completed. Biochemists and clinical chemists who are not members are invited to attend and are urged to consider active participation as members or associate members. Information about qualifications for membership and application forms may be obtained from Miss Miriam Reiner, Gallinger Hospital or Capt. David Seligson, M.C., Walter Reed Army Medical Center.

Lt. Col. Monroe E. Freeman, Temporary Chairman of Newly Formed Section

The Design of Instruments for Flame Photometry

by

Dr. Robert Bowman, National Institute of Health, Bethesda, Maryland

Clinical Chemical Applications of Flame Photometry

by

Dr. John Reinhold, University of Pennsylvania Medical School, Philadelphia, Pennsylvania

Clinical and Physiological Experiences with Flame Photometry

by

Dr. Robert Berliner, National Institute of Health, Bethesda, Maryland

Following the program, a business meeting of the members of the Association undertook the organization of the Washington Section, application for charter, and election of officers for 1952-53.

BOSTON SECTION

The Boston Section held its fifth meeting of the current season on March 19th at the New England Center Hospital in Boston.

After a short business meeting, a round-table discussion ensued on the determination of serum cholesterol.

Norbert Benotti, Director of the Boston Medical Laboratory, presented a critical discussion of the Sperry method, which was accompanied by an excellent series of 35 mm slides illustrating its technique. Highlighting his talk was the presentation of data showing the reliability of the Sperry method when portions of identical sera are analyzed by several different workers in other laboratories. The agreement in results obtained in this survey justifies the regard that most clinical chemists hold for the Sperry method.

Carol Cooney of the New England Center Hospital Chemical Laboratory discussed the Kendall method (Forrest Kendall, Goldwater Memorial Hospital, New York) for total cholesterol, (J.B.C. April 1952). This procedure, though offering simplicity, is yet capable of impressive accuracy. Miss Cooney presented data which involved many estimations done by both the Kendall and Sperry methods, the latter being used as a criterion.

Below are tabulated a few representative values excerpted from her talk:

<table>
<thead>
<tr>
<th>SPERRY</th>
<th>KENDALL (duplicates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>352 mg.%</td>
<td>363, 359 mg.%</td>
</tr>
<tr>
<td>229 mg.%</td>
<td>223, 222 mg.%</td>
</tr>
<tr>
<td>202 mg.%</td>
<td>206, 206 mg.%</td>
</tr>
<tr>
<td>221 mg.%</td>
<td>220, 216 mg.%</td>
</tr>
</tbody>
</table>

It will be seen that the method compares very favorably with the Sperry method and offers great reproducibility in duplicate as well. Briefly, its technique involves saponification of the esters directly in the serum (0.2 cc.) with alcoholic KOH, followed by extraction of the total cholesterol with petroleum ether. The color development is done conventionally by a modified Liebermann-Burchard reagent.

The Boston Section held its fourth meeting of the current season on February 20th, at the New England Center Hospital.

The speaker for the evening was Dr. Herbert Fischer, who is on a year's leave to Tufts Medical School from Frankfurt, Germany. He discussed paper chromatography from its development in England to techniques which it offers for potential use in clinical chemistry.

He reviewed many techniques, including those for sugars and their phosphate esters, keto acids, carotenoids, steroid hormones and purines, and discussed the specific methods for developing their chromatograms.

Treated also were the applications of paper chromatography in the pharmaceutical field and in inorganic analysis.
NEW YORK — METROPOLITAN SECTION

The last scientific meeting for the 1952 Spring semester of the New York Section was held Tuesday evening, March 25, at the New York Academy of Sciences. Dr. Bernard Klein, Chemist at the Kingsbridge Veterans' Administration Hospital, presided.

The topic of the evening "Sodium and Potassium, Clinical Significance and Quantitation" was discussed by two well known workers in that field, Professor Charles L. Fox, Jr., New York Medical College, spoke on "The Clinical Significance of Sodium and Potassium Determinations". Dr. Fox's talk was very well illustrated with slides featuring actual case histories of various disease states in which the accurate electrolyte determinations played a very important part in the treatment of the patients.

Dr. Joseph Greenspan, of the Process and Instruments Co., Brooklyn, N.Y., designer and manufacturer of a widely used flame photometer spoke on "The Design and Use of Instruments for the Determination of Sodium and Potassium In The Clinical Laboratory". Dr. Greenspan's talk took the main points from the various questions and inquiries received by his office concerning the operation of flame photometers. He also speculated on the further instrumentation for clinical chemistry laboratories, with instruments that are at the moment well beyond the scope of the average hospital budget. He said, "If the demand for such new instruments is forthcoming, manufacturers will make every effort, through design and manufacture to bring the prices within the range of the average laboratory."

Dr. Greenspan also urged the members to write to the manufacturers telling about any complaints or better ideas of design and use of instruments. "It is this way that designers and manufacturers can keep in touch with the laboratories that use the instruments in their daily work."

PHILADELPHIA SECTION

The regular monthly meeting of the Philadelphia section was held Thursday, April 24 at 7:30 p.m. Dr. Earle Barker of the Department of Medicine, University of Pennsylvania Medical School, gave a very clear and interesting talk on kidney function tests.

At the May 22 meeting a group of chemists from Mt. Sinai Hospital, Philadelphia, will discuss their work on blood coagulation.

RENAL FUNCTION TESTS

Earl S. Barker — Hospital of University of Pennsylvania

General principles of functional testing: (1) Functional testing will not make etiologic diagnoses or differentiate acute and chronic disease. (2) There is a wide physiological range in the same individual and an even wider range from one individual to another. "Normal" values are difficult to establish. (3) Physiologic testing frequently gives most information when measuring response to stress. (4) Early characteristic patterns are lost with later diffuse damage. (5) No test is better than its execution.

Measurement of specific renal functions: An understanding of the principles (such as "clearance" and related concepts) involved in these primarily research methods permits a better understanding not only of medical articles, but also of the application of the ordinary clinical tests. (1) Glomerular filtration rate as clearance of insulin, mannitol or endogenous creatinine. (2) Renal plasma flow as clearance of para-aminophenyluric acid or diodrast. Renal vein catheterization permits application to situations in which extraction is decreased. (3) Tubular maximal capacity, by saturating a tubular reabsorbptive (glucose) or excretory (para-aminophenyluric acid) system. Represents the mass of functioning renal tissue. (4) Derived functions include "filtration fraction", renal "extraction", "renal vascular resistance", etc.

Clinical methods: (1) Concentration. Specific gravity less than 1.020 after 12 hrs. fluid restriction ("nothing that can be poured") suggests functional impairment. Mobilization of edema fluid may interfere. (2) P.S.P. excretion parallels roughly renal plasma flow, but also depends on adequate tubular function. Early impairment is demonstrated best in 15 minute specimen. (3) Urea clearance and Blood Urea Nitrogen indicate roughly glomerular filtration. Clearance shows early impairment better, while Blood Urea Nitrogen is best for following late changes. Use of "standard urea clearance" or "maximal urea clearance" depends on rate of urine flow. Endogenous creatinine clearance may ultimately replace urea clearance as a clinical test. (4) Blood chemical changes, especially in electrolytes and acid-base balance may supplement renal function tests. (5) Excretory urography may show functional impairment by inadequate visualization. If Blood Urea Nitrogen exceeds 40 mgs/100 ml, concentration of dye is not likely to permit visualization.

Ordinary clinical functional tests are adequate for management of most patients. The more difficult and time-consuming research tests, are designed to determine generalities from large numbers of tests. Routine urinalysis, cultures, cystoscopy, retrograde urography and other non-functional tests are of great aid in diagnosis and management.

SOUTHERN CALIFORNIA SECTION

SURVEY OF INTER-LABORATORY ACCURACY

Pooled serum was collected and analyzed by one laboratory for sodium, potassium, calcium, total protein, A/G ratio and total cholesterol. Since all results fell in their respective normal ranges, the pooled serum was fortified with sodium chloride and calcium chloride so that at least two of the analyses should have abnormal results. All lots of this serum were then mailed out by first class mail in screw-cap vials to member laboratories in the Los Angeles area with instructions to perform the above-mentioned tests in duplicate and to return the duplicate results anonymously with a notation of the method used, the date of the performance of each test and the date of receipt of the specimen. In nearly every case the samples were received within 24 hours of mailing. In most cases the analyses were performed within 3 days of mailing.

Ten to fourteen laboratories reported on each determination and the results were tabulated and analyzed statistically. The arithmetic means of the reported results with limits, expressed as percentages of means, which would include all of the reported results, are as follows: Sodium 156.8 meq/liter ± 7%, Potassium 5.98 meq/liter ± 10%, Calcium 6.31 meq/liter ± 13%, Total Protein 6.68 gms% ± 9%, A/G Ratio 1.96 ± 15%, Total Cholesterol 255.6
The Southern California Section of the American Association of Clinical Chemists is planning to continue this type of study, keeping in mind two objectives:

1. To determine the intra- and inter-laboratory errors of laboratories which are presumably reasonably well-controlled in the statistical and chemical sense.

2. Determine the causes of discrepancies where they appear and thereby improve the quality of clinical chemistry in the participating laboratories.

CHICAGO SECTION

The first combined meeting of the Chicago Section of AACC with the Chicago Section of ACS was very successful. It was held on March 21 at the Furniture Club of America.

Dr. Albert Szent-Gyorgi of the Marine Biological Laboratory spoke on "Blueprints of Life" before the combined meeting after the dinner. Dr. Szent-Gyorgi is Director of the Institute for Muscle Research at the Woods Hole Institution and he spoke on the aspects of actin and myosin of muscle in contraction.

After the main speaker several Group Meetings were held. Our section was well attended — more so than when we had our previous separate meetings. Dr. Charles A. Humes of Coleman Instruments Co. spoke on the "Theory of pH Meters" and Dr. Samuel Natelson of Rockford Memorial Hospital spoke on "Interpretations of Blood pH in Clinical Medicine." Dr. Natelson is the section vice-president. After the speeches Dr. Humes and Mr. George Kincaid of Beckman Instruments demonstrated their respective pH meters.

The Chicago Section intends to have 2 more joint meetings with the ACS — on April 25 and May 23 at the Furniture Club of America, 666 North Lake Shore Drive. Dinner at 6:15. Meeting at 7:45 at which main speaker will be Dr. Edgar C. Britton who will talk on "Industrial Research." Afterwards (9:00 p.m.) our local meeting will have Dr. Hugh J. McDonald, Professor and Chairman of Department of Biochemistry, Stritch School of Medicine of Loyola University, talk on "Ionography." Dr. McDonald has been elected national vice-president of the AACC.

NEW INSULIN DESCRIBED

In the January number of the American Journal of Physiology 168, 37, 1952, Fritz Bischoff describes a new insulin which does not form an insoluble precipitate at the pH of the body and yet produces a delayed effect when given either by the intravenous or subcutaneous route. It is formed by changing the regular insulin molecule in an environment of concentrated aqueous urea or methyl urea under specific time-temperature relations. By the subcutaneous route the delayed effect in rabbits and human diabetics is nearly identical to that produced by the depot insulin, NPH Iletin, a proline zinc insulin, and histone insulin, neither of which produces a delayed effect when administered intravenously.

Dr. Bischoff is a member of the Executive Committee of the AACC and is also a member of the Editorial Advisory Committee of THE CLINICAL CHEMIST. Dr. Bischoff is associated with the Santa Barbara Cottage Hospital Research Institute, Santa Barbara, California.

INTERNATIONAL CONGRESS

The Division of Biological Chemistry of the American Chemical Society is cooperating with the American Society of Biological Chemists in an effort to send a few young American biochemists to the International Congress of Biochemistry in Paris this summer.

The selection of applicants will be made by a committee established by the American Society of Biological Chemists. Any American biochemist who is interested, whether or not he is a member of the Division of Biological Chemistry, and who is under 40 years of age should write immediately to Dr. Elmer H. Stotz, University of Rochester, School of Medicine and Dentistry, Rochester 20, N. Y.

SITUATION WANTED

CLINICAL CHEMIST—PhD June 1952. Univ. of Iowa, Iowa City. 27 yrs. old, single, veteran. 3 yrs. experience in routine clinical chemistry lab at University Hospital. Sigma XI, Phi Lambda Upsilon. Publications. Desires position in teaching hospital with opportunity for research. Eastern U.S. preferred. Saul Green, Pathological Chemistry Lab, E-325 University Hospital, Iowa City, Ia.
ATTENSHUN!

Presenting

BERNHARD-LENOX
HILL HOSPITAL
HEMATOCRIT TUBE

- Uniform in Height
- Uniform in Weight
- Uniform in Thickness

Pardon us for strutting. It can’t be helped. We’re proud. We’re magnificent. We’re incomparable. We know it and soon you will, too.

Just look at us! We are all the EXACT SAME size, the EXACT SAME weight, and have IDENTICAL graduations. We eliminate the necessity of shifting and balancing test tubes for centrifuging. We are graduated to hold 6 ml.

We’re immaculate. We’re so easy to clean. No trouble washing us from the tip of our rim to the bottom of our tubes. That’s because we have no constrictions... we’re UNIFORM IN HEIGHT... IN WEIGHT... IN THICKNESS. We’re made according to the rigid specifications required for the Bernhard-Lenox Hill Hospital Hematocrit Tube. See why we’re proud?

In addition to all this, we’re versatile. Although we are primarily used for Hematocrit determinations, we may also be used for collection of blood for prothrombin time determinations and for sedimentation rate tests.

Our catalog number is G 44230. Send for us. We cost only $13.20 per dozen. We’re inexpensive... we solve lots of problems. We’re sold exclusively by Standard Scientific Supply Corporation. See you in your lab... soon.

STANDARD SCIENTIFIC SUPPLY CORP.
34 West 4th Street
New York 12, N. Y.

LABORATORY APPARATUS - REAGENTS - CHEMICALS

When writing to the Standard Scientific Supply Corporation, mention THE CLINICAL CHEMIST.
CODE OF ETHICS
PRESENTED TO AACC

As one of the major accomplishments of their term of office, the outgoing National Executive Committee formulated a CODE OF ETHICS for professional guidance in the practice of clinical chemistry. The last three Executive Committee meetings this spring, saw a major percentage of time spent on this code.

Final wording was approved at the last meeting of the committee and the code was ordered published in full in this issue of THE CLINICAL CHEMIST, so that the organization membership may study the articles and contribute suggestions before the code is finally approved.

The Guide to Ethics is published on page 6, except for one section, section 3 Article II: Advertising and Publicity. The wording of this section is being prepared to conform with accepted professional ethical standards. It will be published as soon as available.

Suggestions as to changes and additions should be sent to the National Secretary, Dr. Max M. Friedman, Queens General Hospital, Jamaica 2, N.Y., or to THE CLINICAL CHEMIST, Box 123, New York 21, N.Y.

BY-LAWS ADOPTED

The first articles of By-Laws for the administration of the American Association of Clinical Chemists, Inc., were adopted by a vote of the membership 202 to 5. The membership was canvassed by mail ballot and the votes were counted at the Executive Committee meeting held in New York, May 27.

With its adoption by the membership the By-Laws, as published in THE CLINICAL CHEMIST, Vol. 4 No. 2 March 1952, are now the official addition to the constitution of the Association.

NEW PRESIDENT

Dr. Albert E. Sobel, newly elected President of the AACC is welcomed to his new office by Dr. John C. Reinhold, outgoing president. (Courtesy Chemical & Engineering News)

PRESENT BISCHOFF AWARD
AT SEPTEMBER MEETING

The Ernst Bischoff Award in Clinical Chemistry will be presented at an Association Dinner-Meeting to be held Tuesday evening, September 16, at Atlantic City, N.J. The Dinner-Meeting has been arranged as part of the program of the 1952 National Meeting of the American Chemical Society, September 14-19.

The program has been arranged by the Association program committee, and have been assured by Dr. Otto Schales, Secretary-Treasurer of the Division of Biological Chemistry, that if enough pertinent papers are submitted there will be a scientific session on clinical chemistry that will be held the same day.

The first National Annual Meeting of the American Association of Clinical Chemists, Inc., was held in Atlantic City four years ago. This coming September, that convention city will be the scene of the first presentation of the specially designed bronze medal, scroll, and $500 award to a clinical chemist, for achievements and devotion to the science.

The program for the dinner will feature the first Ernst Bischoff Lecture “An Extrapolation Into The Future of Clinical Microanalysis”, delivered by Dr. David Glick, Professor of Physiological Chemistry, University of Minnesota Medical School. Other speakers will be, Mr. H.G. Terwilliger, President of the Ernst Bischoff Company, who will dedicate the first award, and Dr. Harry Sobota, Chairman of the Award Committee.

The meeting will also feature a short address by Dr. Albert E. Sobel, newly elected President of the Association, titled “Clinical Chemistry In Europe.”
MICROBIOLOGY BOARD ENCOUNTERS OPPOSITION

The progress made in medicine during the past two decades has depended to a large extent upon the increased utilization of the basic sciences, chemistry, physics and microbiology. The influx of science into the medical arts in this era has made it virtually impossible for any one individual to achieve and maintain competence in all of the basic sciences and the various branches of clinical medicine. As a result, basic scientists have been recruited by those practicing modern medicine and we now see increasing numbers of chemists, physicists and biologists in the laboratories servicing the medical profession.

Means for establishing the competence of the scientist engaged in laboratory work on biological material derived from human sources is a step forward to better public health. The American Board of Clinical Chemistry has undertaken the task for the chemists. Physicists are certified by the American Board of Radiology. Recently plans were formulated for an American Board of Medical Microbiology. In contrast to the American Board of Clinical Chemistry, an independent body organized by the then existing interested chemical societies, the microbiologists planned to include representatives of the medical profession and to request sponsorship of the Advisory Board for Medical Specialists of the American Medical Association. The College of American Pathologists opposes the establishment of this new certifying body.

The practicing pathologist, who may be the administrative head of a laboratory service, has an obligation to the community to exploit as rapidly and fully as possible the contributions of chemistry, physics and microbiology. The employment of experts in this field is essential for the benefit of the patient. To group these scientists under the label "a vast horde of other laymen," for whatever motive, reveals a lack of appreciation of the contributions made by these scientists both in research and in service. Very few scientists, if any, including pathologists are blessed with the wisdom of knowing all phases of laboratory work. Perhaps the question should be raised as to who is a layman in respect to what. In most cases the pathologist is a layman in respect to the laboratory practice of medicine and the same may hold true for microbiology.

There is a great difference between the practice of the medical arts and the practice of laboratory science. Competent chemistry is chemistry, whether performed at the request of a practicing physician or for other purposes. It is not the practice of medicine.

The contributions of microbiology in the service of humanity are many. The vaccines and antibiotics are now taken for granted. A team of microbiologists, biochemists, and organic chemists have recently developed a fermentation process for the production of cortisone (C&EN 30, 2623, 1952). The major advances in the fight against cancer, heart disease, and the diseases of aging are being made at the laboratory benches of the basic scientist. To go on record as opposing the natural integration of science into the medical arts, by imposing restrictions based on the type of university degree, is not in the public interest.

We believe that the College of American Pathologists and the various specialty boards in basic science have a common meeting ground. The goal should not be obscured by differences of opinion on the definition of the practice of medicine. The goal is the improvement of the health of man through expert laboratory service.

*See page 7
Dear Sir:

I read with interest the Secretary's report in the March issue of THE CLINICAL CHEMIST. The AACC would indeed render a great service to its members by supplying them with employment information. In that connection, I wonder if the Association could not adopt, at least for the present, the system which was previously used by the Federation of American Societies for Experimental Biology (L.K. Anderson, Fed. Proceedings 10, 684(1951)). Under that system one of the members acts as the clearing station for employment information and prospective employers and applicants for positions send forms to that individual. I realize the shortcomings of such a scheme, but it would take the financial and administrative burden from the hands of the Association, and, given the proper individual, provide faster and more confidential service than advertisements in the CLINICAL CHEMIST.

Bethesda, Md.

Very truly yours,
Erich Hoffmann

COLLABORATION STUDIED

The request of the American Pharmaceutical Association for a committee of the AACC to revise the section on "Reagents and Preparations for Use in Clinical Laboratories" of the National Formulary (NF IX), has been studied by the Executive Committee.

At the last meeting of the AACC Executive Committee, a committee, consisting of Louis B. Dotti, Max M. Friedman and George T. Lewis, was appointed to study the effect of collaboration with the APA's revision program, on our Association's standardization program and publications of the Committee On Methods.

NEW MEMBERS ELECTED BY THE EXECUTIVE COMMITTEE
June 10, 1952

A. Harriet MacDonald, Boston, Mass.
Julia V. Pastewka, Erie, Pa.
Ralph E. Peterson, Silver Spring, Md.
Mary F. Ming, Trenton, N.J.
Penni A. Lipischez, Brooklyn, N.Y.
Marion E. Webster, Washington, D.C.
Richard H. Ettinger, Washington, D.C.
Henry G. Arwood, Iowa City, Iowa
Jerry Weisberg, Brooklyn, N.Y.
Daniel Shanahan, Silver Spring, Md.
Joseph Plestina, Chicago, Ill.
Arthur Stull, Washington, D.C.

A.E.L. NO. 751

ELECTRONIC STIMULATOR

A versatile, self-contained unit which provides a wide range of recurrent square wave pulses of variable duration, for use in physiological, pharmacological and biological tests.

ELECTRONIC STIMULATOR, SQUARE WAVE, VARIABLE PULSE, A.E.L. No. 751. A versatile, self-contained unit which provides a wide range of recurrent square wave pulses of variable duration, and also single impulses of variable duration, continuous d.c. stimulation up to 10 seconds duration, and a polarity reversing switch for use in physiological, pharmacological and biological tests in educational and research laboratories.

VARIABLE PULSE DURATION. Adjustment can be set from .05 to 50 milliseconds (± 10%) in 9 steps, making it suitable for determining both rheobase and chronaxie, i.e. the minimal voltage required for stimulation and the minimal time for stimulation with voltage twice the intensity of the rheobase.

MAXIMUM OUTPUT, or stimulus amplitude, is 150 volts with terminal load of 10,000 ohms. The polarity of the output is reversible by means of a toggle switch in the lower right-hand corner of the front panel.

STIMULUS FREQUENCY. Variable in 10 steps from 1 to 240 cycles per second, with intervals between 1, 2, 3, 5, 7, 10, 20, 60, 120, 240, accurate within ± 10%, and reproducible within ± 2%. Single impulses are possible by depressing the lever which controls the multiple pulse circuits. The duration of the single pulse so provided is adjusted by setting the "Pulse Duration" dial. For more extended single pulse requirements, a "H.C." knob operates a switch which, when depressed, applies a continuous stimulus not exceeding 10 seconds. Frequency can be changed without affecting the wave form.

8099-E. ELECTRONIC STIMULATOR, SQUARE WAVE, VARIABLE PULSE, A.E.L. No. 751, as above described, complete with 5 ft. connecting cord and plug, and directions for use. Power consumption 50 watts. In metal cabinet finished in smooth gray Hammertone enamel, 14 inches long x 8 inches high. For 115 volts, 50 or 60 cycles, a.c. $125.00

5% discount in lots of 3: 10% discount in lots of 6.

More detailed information sent upon request.

ARTHUR H. THOMAS COMPANY
LABORATORY APPARATUS AND REAGENTS
WEST WASHINGTON SQUARE
PHILADELPHIA 6, PA.

Teletype Service: Western Union WUX and Bell System PH-72
Many articles have appeared describing the principle of the flame photometer, the many advantages of the internal standard flame photometer over the absolute type, the construction features of different versions of this instrument, and the comparative performance characteristics of existing commercially available units. It is not our intention to repeat or extend these discussions. Rather, we shall present a number of questions which have arisen in the daily use of flame photometers and shall attempt to answer these questions from the point of view of a designer of instruments.

One question frequently asked by users of flame photometers is whether it is necessary to use propanol or acetylene as fuel. Cannot illuminating gas be used? As a matter of fact, illuminating gas can and is sometimes used. It is applicable to many of the flame photometers currently available although a small change in the burner design may be required. However, the question should really be changed from 'can' to 'should' one use illuminating gas? House illuminating gas varies in composition in different parts of the world, whereas tank propanol is rather constant in composition. This may introduce inconsistency of calibration curves if an instrument is moved from one place to another. However, this is not too serious a problem since one can calibrate an instrument at each given location, using the illuminating gas at that particular place.

Unfortunately, there is no guarantee that the illuminating gas will remain constant in composition at any one location. It is not at all unusual for a 'slug' of gas of different composition to come thru the gas lines and thereby change the flame color with consequent errors in analysis. Only by watchfulness and by calibrating more frequently can such effects be overcome.

An even more serious problem in the use of illuminating gas is that arising from pressure fluctuations. Illuminating gas from house lines is usually at low pressure, and this low pressure varies through the day as the load on the gas lines varies. Since the light output of the flame is a marked function of temperature and, in turn, upon the pressure of the fuel gas, it is very important to maintain constant fuel gas pressure. While this may be accomplished rather easily thru mechanical regulators on the high pressures present in propane tanks, it is not easily done with commercially available regulators at the low input pressures of illuminating gas lines. We would therefore suggest that propane is a preferable fuel until good low pressure gas regulators become available.

A second rather troublesome problem is that due to background. Two sources of background should be distinguished: contamination from impurities in the air reaching the flame (soap powder, tobacco smoke, laboratory dust, etc.) and noise level due to factors such as changes in temperature of flame arising from fluctuations in the 'controlled' air and gas supplies.

Contamination can be minimized in several ways: all air reaching the flame should be passed thru an efficient filter; room air must not be drawn thru the ports or valve openings at the bottom of the burner by closing off all such openings; a chimney with enclosed bottom may be used to surround the flame and thereby prevent room air from reaching the edges of the flame. In most cases, a good filter in the compressed air line is adequate.

The attempts to lower noise level background control of air and gas pressures have led designers in many directions. Burners have been designed which use air from the compressor only. These require very careful control of air pressure. Some burners do not require such careful control since they draw air directly from the atmosphere (in addition to compressed air) and thereby utilize the constancy of atmospheric pressure as a means of regulation of air pressure. However, such use of direct atmospheric air increases contamination background.

Since all available flame photometers introduce the fuel gas directly into the burner, all units require good control of gas pressure to minimize noise. Some instruments rely on illuminating gas line pressure, which is added to propanol tank regulators, and some on pressure regulators in addition to tank regulators. In any case, background noise depends very much upon the degree of control of the air and gas supplies, even in the case of flame photometers using the internal standard method of analysis.

The use of the internal method of analysis minimizes but does not eliminate the need for good pressure regulation of air and particularly gas supplies since the effective photocurrent ratios will not in general be exactly the same for varying flame conditions.

A third problem which has disturbed instrument designers is that of producing an efficient atomizer. Many of the atomizers have an efficiency of less than 5%, i.e., 95% of the spray particles are large and drop out of the air stream before reaching the flame. Atomizer efficiency has been increased in some cases by using very fine capillaries as orifices to produce a fine spray. This, however, results in frequent clogging of the fine capillaries. Another method is to introduce the sample axially directly into the burner, thereby using all of the sample to increase efficiency and thus, light output. The use of a high temperature flame further helps to vaporize the large amount of water present in the particles of spray that do get into the flame.

Another point which frequently disturbed users of flame photometers is concerned with the life of photocells. Except for occasional faulty cells, the life of the vacuum type photocells should be very long. This long life should also be true for the barrier layer selenium cells used in many flame photometers provided the cells are hermetically sealed. Our tests and reports of performance of several hundred hermetically sealed barrier layer cells in daily use over periods as long as four years in some cases show that practically all of these have maintained their original sensitivity throughout the test period.

A considerable degree of confusion has arisen in the field of flame photometry due to the indiscriminate use of the terms sensitivity, accuracy and reproducibility in reporting results. The advertising literature in this field has perhaps been the worst offender in this connection. Thus, statements like 'the instrument is accurate to 1% appear quite frequently. Since different meanings can be given to this statement, it should be more clearly limited.

An example may perhaps serve to illustrate the difficulty: A given instrument has a noise level background equivalent to 0.004 milliellequiv., per liter of Na (or K) i.e., results can be reproduced to 0.004 milliellequiv., per liter. The range of the instrument is set to determine between 0.2 and 1.4 milliellequiv., per liter. Now, if one in analyzing Na (or K) at a concentration of 0.4 milliellequiv., per liter, this instrument can distinguish between 0.400 and 0.404 milliellequiv., per liter or "1%" at this concentration. If we perform an analysis at a lower concentration, say 0.2 milliellequiv., per liter, we can distinguish between 0.200 and 0.204 milliellequiv., per liter or only "good to 2%". Of, if one operates at the upper end of the range, this instrument can distinguish between 1.400 and 1.404 milliellequiv., per liter or "better than 0.28%". To state that the instrument is good to 0.5% or to 1% or to 2% are equally misleading statements unless accompanied by the specific concentrations at which these reproducibility percentages were obtained.

Another factor to keep in mind is that the sensitivity (i.e., change in reading per unit change in concentration—not to be confused
MINUTES OF
EXECUTIVE COMMITTEE
May 27, 1952

The Executive Committee met at the Medical Arts Center Hospital in New York City on May 27, 1952 at 8:00 P.M. Those present included John G. Reinhold, President; Albert E. Schell, Vice President; Max M. Friedman, National Secretary; Louis B. Dotti, National Treasurer; Harry Selkoff, Ellinore Viergiver, and Harold D. Appleton (by invitation).

The minutes of the April 14, 1952 meeting in New York City, previously distributed, were adopted without correction. The minutes of the April 1, 1952 meeting in Milwaukee, previously distributed, were corrected for paragraph two, where "Editorial Advisory Committee" was substituted for "Editorial Board."

The Association By-Laws, as published in the March, 1952 issue of the newsletter, were adopted as Amendment I to the Constitution by a membership vote of 202 to 5.

Pearl R. Anderson, on behalf of the membership in the Washington-Baltimore-Richmond area, requested that the status of a section be accorded to the group. Since the constitutional requirements have been met, it was moved, seconded, and unanimously approved that this area be designated as the Washington-Baltimore-Richmond Section.

The Philadelphia Section By-Laws were approved as submitted, pending some changes requested by the Executive Committee to bring these by-laws into conformity with the National By-Laws. These amended by-laws are to be returned to the Section for its approval.

Preparations were made for the Ernst Bischoff Award of 1952 which will be presented at the ACS meetings in Atlantic City in September, 1952. Expenses for a guest speaker for this ceremony were approved to a maximum of one hundred dollars.

Approval was given to the present policy of "editorial discretion" in THE CLINICAL CHEMIST as it pertains to potentially controversial comments submitted by members. It was recommended, however, that the Editorial Board should frequently point out that such opinions do not necessarily represent the official position of the Association.

The request of the American Pharmaceutical Association for the AACC to collaborate in revising the section on "Reagents and Preparations for Use in the Clinical Laboratory" of NF IX was discussed at length. Various comments were contributed, but the majority opinion was that further study should be given to the matter, especially as to the affect such a collaborative project would have on the standardization program and manual of recommended methods sponsored by the AACC. A committee consisting of Louis B. Dotti, Max M. Friedman, and George T. Lewis was appointed to study such a proposed collaboration and make its recommendations.

Louis B. Dotti, National Treasurer, was requested to submit an annual budget for the fiscal year 1952-53 as required by the by-laws.

The code of ethics was completed and tentatively approved. This code is to be published in the July, 1952 issue of the newsletter. Members will be invited to contribute suggestions before final approval by the Executive Committee.

The meeting was adjourned at 10:45 P.M.

Respectfully submitted,

Max M. Friedman, National Secretary
GUIDE TO ETHICS GOVERNING THE CONDUCT OF CLINICAL CHEMISTS

Article I
DEFINITIONS AND GENERAL CONSIDERATIONS

WHAT CONSTITUTES CLINICAL CHEMISTRY

Section 1. Clinical chemistry is that branch of chemistry which deals with the composition of the secretions, excretions, concretions and fluids of the human body in health and disease, and the chemical composition and metabolism of cells and tissues. Also the search for the presence of substances (or their derivatives) given for diagnostic or therapeutic reasons and the search for poisons (or their derivatives) are properly included in the field of clinical chemistry.

WHAT CONSTITUTES A CLINICAL CHEMIST

Section 2. Any individual equipped by education and experience to engage in the practice of clinical chemistry as defined above shall be considered a clinical chemist.

RESPONSIBILITY OF THE CLINICAL CHEMIST

Section 3. The profession of clinical chemistry, as an adjunct to the profession of medicine, has as its ultimate responsibility the welfare of the public. The clinical chemist shall use to the best of his ability his scientific skills and knowledge to the benefit of all men without regard for racial or religious origin.

EDUCATION AND EXPERIENCE

Section 4. The clinical chemist shall have as his goal the acquisition of the best available education and experience in chemistry. He shall strive to constantly enlarge and improve his knowledge.

RELATIONSHIP TO THE MEDICAL PROFESSION

Section 5. The clinical chemist shall deal with the medical profession at all times at the highest professional level. The compensation by the patient for chemical services shall include no rebates or commissions to any persons for solicitation or referral of analyses.

RELATIONSHIP TO THE PATIENT

Section 6. The clinical chemist shall perform no services to the patient except on advice or prescription from any licensed practitioner of the medical arts. All reports and discussion of chemical findings shall be only between the chemist and the physician in charge.

Article II
PUBLICATION, PATENTS, AND ADVERTISING

DISSEMINATION OF SCIENTIFIC INFORMATION

Section 1. The clinical chemist shall freely discuss with his fellow chemists and with scientists in related fields, advances in the science of clinical chemistry. To withhold information for personal interest shall be considered unethical. This Section shall not apply to information classified by a government agency for reasons of national security.

PUBLICATION OF RESEARCH FINDINGS

Section 2. An obligation to publish, after critical evaluations, new knowledge pertaining to the science of clinical chemistry obtained through research or other observations, shall be acknowledged.

ADVERTISING AND PUBLICITY

Section 3. (to be written)

PATENTS AND COMMISSIONS

Section 4. It shall be considered unethical for the clinical chemist to receive personal profit for any invention or patent in the field of clinical chemistry pertaining directly to the public health.

Article III
OBLIGATIONS AS A CHEMIST

ACCURACY OF CHEMICAL ANALYSES

Section 1. The clinical chemist shall have as his goal the attainment of the highest precision and specificity that existing procedures permit.

REPORTING OF SIGNIFICANT FIGURES

Section 2. The analyst shall not report figures or decimal places that lack significance.

CRITICAL SURVEY OF METHODS

Section 3. It shall be considered inadequate practice for a clinical chemist to use any procedure that has not been adequately studied in his own laboratory.

REPLICATES AND RECOVERIES

Section 4. The systematic use of controlled procedures, such as replicates and recoveries, shall be considered indispensable to good practice.

RESULTS OF UNCERTAIN MAGNITUDE

Section 5. The clinical chemist shall not report any result of uncertain magnitude of error, unless this uncertainty is clearly made known to the recipient of the report.

Article IV
INTERPRETATION OF RESULTS

DUTIES TO THE PHYSICIAN

Section 1. The clinical chemist shall, at the request of the physician in charge of the patient, outline to the physician the significance of any chemical findings, and suggest further determinations that would aid the physician in making a diagnosis or prognosis.

DUTIES TO THE PATIENT

Section 2. The clinical chemist shall under no circumstances transmit to the patient either the results or the interpretation of the results.

COMPENSATION FOR CONSULTATIONS

Section 3. The clinical chemist shall receive no compensation from the patient for interpretation of results to the physician.
THE CLINICAL CHEMIST AS AN INDIVIDUAL

A SCIENTIST AT ALL TIMES

Section 1. The clinical chemist shall conduct himself as a scientist at all times.

HIGH REGARD FOR MEDICAL PROFESSION

Section 2. The clinical chemist shall hold in high esteem the profession of medicine, to which he is an adjunct.

RELATIONSHIP WITH ANALYSTS

Section 3. The clinical chemist shall carefully supervise the analysts working in his laboratory. He shall train these workers to the best of his ability, encourage them to attain the highest professional competence, and teach them by word and example to adhere to the ethical standards herein outlined.

CERTIFICATION OF MICROBIOLOGISTS OPPOSED BY PATHOLOGY GROUP

The following paragraphs are quoted directly from the Secretary's Newsletter of the College of American Pathologists, April 1952. Space limitation does not permit us to publish the entire comment. The elimination of non-pertinent paragraphs does not alter the meaning or intent of the article. Please see Editorial on page 2. (The Editor)

Attention has already been called to the efforts that have been made to organize a new specialty board — the American Board of Medical Microbiology. The new board would have a status similar to the eighteen specialty boards now in existence. It proposes to issue certificates to Ph.D. workers as well as to physicians. Strange as it may seem, the Advisory Board for Medical Specialties is said to have given tentative approval to the new board despite the protest of the College of American Pathologists. The approval will not be effective unless approved also by the Council of Medical Education and Hospitals of the A.M.A.

It is indeed surprising that a proposal of this sort which actually admits non-medical men into a field of medical practice could have succeeded as far as it has. Surely the Advisory Board for Medical Specialties has failed to foresee the implications involved. The certification of non-physicians in one field of medical practice will provide an entering wedge for clinical chemists, clinical psychologists, radiologic technicians, optometrists, chiropodists, and a vast horde of other laymen into other fields of medical practice. (italics ours)

PHILADELPHIA SECTION

The regular monthly meeting of the Phila. section was held May 22 at Lankenau Hospital, Philadelphia. Dr. David Merz and Messrs. Golub, Schenker, Kaplan and Feldman, of Mt. Sinai Hospital, Phila., talked on Blood Coagulation. The following officers were elected for the coming year: President, Dr. Cecilia Riegel, Lankenau Hospital; Vice-President, Dr. Alexander Keller, Graduate Hospital; Secretary, Albert Sample, Bryn Mawr Hospital.

CHICAGO SECTION

The Chicago Section held its final scientific meeting of the spring season on June 20 at the Chicago YMCA.

Dr. Jerimiah Stanler, of the Cardiovascular Research Department of the Michael Reese Hospital, Chicago, discussed "Cholesterol and Atherosclerosis".
BOSTON SECTION

The Boston Section held its sixth and final meeting of the current season on Wednesday, May 14, at the New England Center Hospital. The speaker of the evening was Dr. Arnold S. Relman, Assistant Professor of Medicine at the Boston University School of Medicine, who spoke on the subject of "Sodium and Potassium Depletion In Clinical Medicine."

The talk was prefaced with a survey of the earlier studies by Peters, Van Slyke, Butler, and others, which led to a greater appreciation of the role played by the electrolytes, and the diagnostic value of their determination in various pathological states.

Dr. Relman outlined in a very lucid manner the basic physiology of electrolyte balance, discussing in some detail the role played by the skin, lungs, kidney and gastrointestinal tract in the absorption and loss of sodium and potassium. Since sodium is the chief cation of extracellular fluid, he pointed out the great loss which can occur as a result of repeated thoracic and abdominal paracentesis. Greater awareness by physicians of the value of electrolyte studies, coupled with the rapidity with which they may be determined with the flame photometer, will save many patients, he stated.

The meeting concluded with a short business session, after which the Boston Section adjourned for the summer.

SOUTHERN CALIFORNIA SECTION

The current season was concluded with the annual dinner meeting held June 3 at the Carillón Pines Restaurant, Los Angeles. Election of officers featured the program. Richard J. Henry, M.D., Bio-Science Laboratories, automatically succeeded Arnold G. Ware, Ph.D., as Chairman. Merle Lovell Lewis, Ph.D., Research Associate in Biochemistry, University of Southern California Medical School, succeeded Dr. Henry as Program Chairman and Chairman-Elect. Kenneth D. Johnson, Chasney Chemical Laboratory, was returned to a second term as Secretary-Treasurer. In retiring, Dr. Ware thanked individually the various committees and persons who had served the section during the past year; and Dr. Henry, as one of his first acts, asked all these persons to continue with their assignments for the coming year.

Dr. Henry arranged monthly scientific programs throughout the past season. A brief review of programs not previously reported upon in these columns follows; and, as space permits, appropriate abstracts will appear in later issues of THE CLINICAL CHEMIST.

A symposium devoted entirely to original research papers of members was held February 5 at the Los Angeles Veterans Administration Center. Some of these papers are now in preparation for publication. Kenneth D. Johnson determined serum calcium by direct titration using a sequestering agent ("versenate"). Saul Kanter, Palo Alto Veterans Administration Hospital, determined free ester and total cholesterol without saponification (work carried out at Los Angeles Veterans Administration Center in association with Joe Goodman and Jane Yarbrough). Joe Goodman, Long Beach Veterans Administration Hospital, applied this method to learn the effect of insulin shock therapy on serum cholesterol levels. George Kingsley, Los Angeles Veterans Administration Center, determined the striking light enhancement effect of organic solvents, especially acetone, in the flame photometric determination of sodium and potassium. Harry Sobel, Cedars of Lebanon Hospital, reported results on a new rapid iodine method (work in association with Stanley Saposin). Richard Henry, Bio-Science Laboratories, after giving a few fundamentals of applied statistics, described a careful evaluation of the errors introduced by specific methods of some common clinical chemical methods.

Merle L. Lewis, Ph.D., who set up the Microchemistry Laboratory of the Pediatrics Department, Los Angeles County Hospital, spoke on "Micro-Methods in Clinical Chemistry" (March 4, Los Angeles County Hospital).

Arthur Adamson, Ph.D., Associate Professor of Chemistry, University of Southern California, a pioneer worker in the wartime projects for the separation of rare earths by ion exchange techniques, discussed the history and application of "Ion Exchange Resins" (April 1, Cedars of Lebanon Hospital).

Raymond Aberdeen, Head Toxicologist, Office of County Coroner, Los Angeles, explained the "Role of the Toxicologist", discussing a typical day's work and problems and describing some new methods he has introduced in his laboratory, especially the determination of barbiturates by ultraviolet absorption spectrophotometry (May 6, Coroner's Office and Toxicology Laboratory).

The local section has now completed its first survey of inter-laboratory accuracy. This time a serum pool was analyzed in duplicate for protein, chloride, icteric index, quantitative total bilirubin and thymol turbidity. In addition, duplicate sodium and potassium determinations were performed on three separate days. Results will be reported later.

The local section participated in the annual convention of the California Association of Clinical Laboratories, held at Santa Barbara May 17 and 18.
Flame Photometer
Model 1B

PROCESS & INSTRUMENTS
Brooklyn 22, N.Y.
MEMORANDUM ON ADMINISTRATION AND DIVISION OF WORK BETWEEN BIOCHEMISTS AND PHYSICIANS AT NORWEGIAN HOSPITAL LABORATORIES.

Modern medicine is a cooperative science, drawing its knowledge from the different branches of the natural sciences. This method has proved to be the best, and often the only possible way to achieve results. Without close cooperation between chemists, physicians and other scientists, the great advances made in medical science during the past decade could not have been realized. Since knowledge is becoming increasingly specialized, it is particularly important that the cooperative spirit should also prevail in daily hospital work, in order to achieve best results.

THE DEVELOPMENT:

For a long time, small ward laboratories have been functioning in our hospital. The chemical work performed there was of a qualitative nature (detection of albumin, sugar, etc.). The work was under the supervision of the ward physician. The methods in use were simple and often dependent on personal judgement. The results were, therefore, not standardized. Such semi-quantitative methods have hampered the development of clinical chemistry as a tool in medicine. In time, increasingly more accurate and quantitative methods were adopted, but the supervision of the laboratories still remained under the physician. These men, however, realized that they were incapable of keeping up with the rapid advances within their own field and also that of biochemistry. This was the reason for the strong demand for establishment of central laboratories.

Previously, physicians had considered chemistry as an assisting science, where no technical knowledge on the part of the personnel was necessary. This attitude has been changed by the rapid development in science. Today, chemical examinations demand fully-trained specialists who are responsible for the accuracy of their results. These results often guide the physician in making a diagnosis and sometimes are the only means for arriving at the correct diagnosis. Certain quick and sure diagnoses, based on chemical findings, will often save the life of the patient. Not only do physicians direct their treatment according to chemical analyses, but also utilize the results to control the course of the treatment. Unreliable chemical determinations are to be classed with unconscientious treatment of the sick.

Future development in clinical chemistry will lead to the full utilization of physico-chemical methods of analysis. Thus, one will become more dependent on the work of chemists and physicists. Ethics demand that the physician do his utmost to aid the sick. This, of course, implies that he must always judge his own competence and never undertake tasks which he cannot manage. Whenever the physician in charge of a case finds that he cannot proceed alone, he consults a specialist. This is regarded as the only correct procedure among medical men, since failure to consult with a specialist might have serious consequences for the patient. This development has introduced a greater demand for specialized training in modern medicine. Thus, the properly trained and qualified chemist is the specialist to whom the physician turns for the correct chemical information. In spite of this, we have a feeling that many still think that everything concerned with illness is a field for the medical man only, including the physicians and particularly pathologists.

TRAINING OF THE PHYSICIAN:

The M.D. receives general medical training (6 years). The scope of the training is to educate M.D.'s capable of working as general practitioners. A specialist in medical biochemistry with physiology (laboratory doctor) must in addition to the M.D. have 1 year as general practitioner, 1 year in a hospital (6 months internal medicine, 4 months surgery). In addition to this, he needs 3 years of practice at a biochemical or physiological laboratory. There is, however, no demand that the education takes place at a laboratory under the supervision of a qualified biochemist. Through his medical education, the physician does not receive sufficient chemical practice, and consequently, he cannot be a biochemist. However, because of his education he will be the liaison between the chemical laboratory and the wards. He learns to appraise and interpret the results of chemical examinations, for the use of physicians in the wards.

TRAINING OF THE CHEMISTS:

The education of the chemists at our universities requires 7 years of study. At our technical high school, the education of chemical engineers takes 4½ years of concentrated chemical study. The chemical engineers frequently have 1-2 years of chemical practice before they commence their study. To graduate, the chemists must prepare a thesis based on independent research work. They must show that they can use their knowledge in a logical and critical manner. They are also required to show that they are mature enough to plan a research project, and have the ability to appraise the methods used, the sources of error, their influence on the results, etc. Through this thesis work, they must demonstrate an ability to consult the literature and critically appraise publications. They take examinations in other topics within the natural sciences. Mathematics is a required subject. The course of studies includes general chemistry, organic chemistry, inorganic, analytical, synthetic, and physical chemistry. A biochemist is also trained in physics and biological subjects.

The development, in the past and in the future at our hospital laboratories, demand a thorough knowledge of chemistry, mathematics, and physics of the responsible department. The apparatus employed becomes more complicated and are demanding for thorough training of the director and other personnel. Even with a thorough training in chemistry and bordering natural sciences, the chemist must specialize in this branch of chemistry, and he must continuously read the literature and publications to keep up with the development. Most chemists in medical biochemistry have specialized training and long experience in the hospital laboratory before they can become responsible directors.

At a chemical hospital laboratory (central laboratory), the chemist must be responsible for the chemical examinations, the methods and apparatus in use. He must also be responsible for the chemical part of the research work carried out.

ADMINISTRATION TODAY:

Both physicians and chemists are at work today at a chemical hospital laboratory. The administration differs at the different hospitals. At Sentral Sykehuset in Trondheim, a medical doctor is the director of the central laboratory, the same is the case at Drømmen Sykehus. At Hamarland Sykehus, the laboratory is under the supervision of a chemist. At Ullevål Sykehus, the laboratory is supervised by a physician (part-time work), the remaining personnel are department physician, assistant physician and a chemist. At Aker Sykehus, the director of the laboratory has recognized training, both as a physician and as a chemist. Rikshospitalet has the largest and oldest chemical hospital laboratory in Norway. It was established in 1928, and has for the last 15-20 years functioned as the central laboratory to Rikshospitalet. Since the establishment, the laboratory has been supervised by a chemist.

CONCLUSION AND SUGGESTION FOR THE ADMINISTRATION IN NORWAY:

Medical biochemistry is the science of the chemical structure of the animal organ.
New Books

Advances in Enzymology, Volume XII

Volume 12 in this series contains papers on Oxidoreduction in Chloroplasts by Hill, Mechanisms of Fixation of Carbon Dioxide by Utter and Wood, Enzyme Substrate Compounds by Chance, The Specificity of Peptidases by Smith, The Enzymatic Hydrolysis and Synthesis of Acetyl Choline by Nachmansohn and Wilson, Starch Chemistry by Meyer and Gibbons, Enzymes of Starch Degradation and Synthesis by Bernfeld, Biological Methylation by Challenger and Reaction of Borate with Substances of Biological Interest by Zittle.

The articles are each reviewed with a critical appraisal of the literature and, in addition, much new information is included. The papers are written by experts on the various subjects and the one on carbon dioxide fixation is particularly well done. This volume is a valuable addition to the series and it is highly recommended to those interested in enzymology.

International Congress

The Executive Committee appointed Dr. Otto Schaies, of the Alton Ochsner Medical Foundation, New Orleans, La., the official representative of the American Association of Clinical Chemists to the Second International Congress of Biochemistry to be held this month in Paris.

Positions Open

Assistant Professor of Pharmacology; Instructor in Pharmacology. Salary open, depending upon qualifications. Excellent opportunity for biochemical and pharmacological research. Ph.D. or equivalent in training and experience. Write Box 123 New York 21, N.Y.

Research and Teaching Assistant in Pharmacology. $2500-$3800 depending on qualifications and experience. College degree in chemistry or biology; Laboratory experience and/or a Master's degree desirable, but not essential. Write Box 123 New York 21, N.Y.

Clinical Chemist for well equipped V.A. Hospital laboratory. Excellent facilities for research. Dr. Alfred Plaut, Winter V.A. Hospital, Topeka, Kansas.
A COMPLETELY NEW INSTRUMENT—An ADVANCE in DIRECT READING ANALYTICAL BALANCES

Now, for the first time... the SPEED of the fastest projection balance combined with ACCURACY exceeding the standards required of the finest analytical balances.

VOLAND Universal BALANCE
Actually TWO Balances in ONE

* A high speed projection balance with superior stability reading to 0.1 milligram.
* Analytical balance readings to 0.01 milligram by means of a simple sensitivity shift, exceeding the standards of the finest analytical balances available.

The only analytical balance in which dual sensitivity is provided, producing a sensitivity 10 times that found in conventional projection balances. Weighs in seconds... weightings to the fourth decimal place obtained literally in seconds by straight projection, or to the fifth decimal place by sensitivity shift, and an additional decade of weights.

All weights up to 200 grams are built into the balance and are obtained by manipulating five selector knobs. Speed is gained by projection reading, eliminating need for weights in lower ranges.

Spacious cabinet allows samples to be placed easily and removed. Weights can be readily lifted out of their supporting members for recalibration or cleaning.

A new and superior standard of speed, accuracy and convenience. Fully meets all the technological requirements of modern laboratory usage.

Order now for September Delivery
Cat. No. 14130 $895.00

7 Important Design Advances
1. Built-in sensitivity shift mechanism for routine or highest precision weighings.
2. New secondary device for obtaining the lower range of weights at the sensitivity of 0.01 milligrams.
3. A vibration-free projection system with unusual zero stability.
4. A new high-strength beam with individually adjustable knife mounts.
5. The only fully compensating stirrups of American manufacture.
7. Design of hanger permitting maximum space for handling samples.

STANDARD SCIENTIFIC SUPPLY CORP.
34 West 4th Street
New York 12, N. Y.
PRESENT FIRST AWARD IN CLINICAL CHEMISTRY

1952 ERNST BISCHOFF AWARD PRESENTED POSTHUMOUSLY TO DR. JOS KAHN

Atlantic City, N.J.—The first Ernst Bischoff Award in Clinical Chemistry was bestowed posthumously to Dr. Jos Kahn, who until his untimely death last December was chemist to the Maimonides Hospital, Brooklyn, N.Y. The award was made at the special dinner-meeting of the American Association of Clinical Chemists and was part of the scientific and social program of 122nd National Meeting of the American Chemical Society, held September 16 in the Belvedere Room of the Hotel Traymore in this city.

Mr. H.G. Terwilliger, president of the Ernst Bischoff Company, dedicated the award and made the first presentation. Dr. Harry Sabotka, chairman of the first Award Committee, accepted the award on behalf of Dr. Kahn's family. The first Ernst Bischoff Lecture was delivered by Dr. David Glick, professor of physiological chemistry, University of Minnesota Medical School.

In awarding the medal to Jos Kahn, the AACC Award Committee presented the following citation:

'The American Association of Clinical Chemists presents The 1952 Ernst Bischoff Award to Jos Kahn for representing Clinical Chemistry at its best and working for its advancement effectively and in collaboration with his associates. Jos Kahn contributed substantially to the medical sciences, both as an individual and as a member of research groups; provided leadership for the clinical staff, and trained a great many assistants in this specialty. He advanced the cause of Clinical Chemistry as a Charter member and in various offices of the American Association of Clinical Chemists. The work of Jos Kahn is identified with the progress of the professional and ethical standards of Clinical Chemistry.'

The Ernst Bischoff Award, presented annually to a deserving Clinical Chemist by the AACC, consists of a bronze medal, scroll and $500.

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE AFFILIATION

The American Association for the Advancement of Science has announced that it has accepted the credentials of the AACC as submitted by the Executive Committee and has elected the AACC as an affiliate society of the AAAS.

With this affiliation the AACC takes its place among the honored and respected scientific organizations of the country. Dr. Michael Somogyi, of St. Louis, Mo., outstanding Clinical Chemist was designated by the AACC to represent our association on the council of the AAAS.

SPECIAL MEETING WELL ATTENDED

by Virginia C. Brown

The clinical chemist, attending the 122nd National Meeting of the American Chemical Society in Atlantic City, N.J., September 14-19, could not help but realize the truly significant growth of the American Association of Clinical Chemists. Since its first National Annual Meeting, held just four years ago, in the very same location, the development and advances that have taken place are undeniable evidence that clinical chemistry has reached truly professional status.

September 16th was truly Clinical Chemists' Day in Atlantic City with a fine group of scientific papers on Clinical Chemistry held at the Hotel Chelsea. Max M. Friedman presided over the meeting and the wealth of pertinent and timely information, provided by the papers presented, was of evident value to all who attended.

On the evening of the 16th a dinner-meeting for members and friends of the AACC was held in the Belvedere Room of the Hotel Traymore. Dr. Albert E. Sobel, the President of the Association, presided and introduced the Officers, Members, and guests who have done so much to bring the organization to the excellent position it now holds. Dr. Sobel gave a resume of the program of activities drawn up for the International Clinical Chemistry Commission. These plans were organized at the 2nd International Congress of Biochemists in Paris in July 1952. Dr. Sobel announced that E.J. King, of Great Britain, has been appointed Chairman of the Commission. It is expected that many fine things will come from this nucleus which will bind Clinical Chemists all over the world. Dr. King is Honorary Member of the AACC.

(Continued page 6)
THE SECRETARY REPORTS

Some individuals who have recently become members of the Association may not be aware that engraved membership scrolls, suitable for framing, are obtainable by sending a check for four dollars to the National Secretary, Dr. Louis B. Dotti, St. Luke's Hospital, New York 25, N.Y. Checks should be made payable to the American Association of Clinical Chemists, and should be accompanied by a statement as to the name and degree to be inscribed. A reproduction of the scroll appeared in a previous issue of the CLINICAL CHEMIST.

The dinner meeting at Atlantic City on September 16th, during which the Ernst Bischoff Award was presented, was the start for another busy year. Although these national meetings highlight the activities of clinical chemistry, yet the local section programs remain a most important phase of the Association. It is hoped that before very long every member will also be a member of a local section, whether it be a metropolitan group or in a wider geographical area. The advantages of local sections are quite obvious, and have been frequently noted. Such sections may be formed by "ten or more voting members residing in a geographical area...".

Although there may be some objections to any active membership drive, yet the fact does remain that there are many qualified individuals who are not yet members of the Association. These persons should be invited by their associates to participate as members in the efforts to advance the scientific and professional standards of clinical chemistry. The membership roster is now approaching five hundred, and a scientific society that has yet to note its fourth birthday may well be proud of that.

We may look ahead with much interest to the expansion of the newsletter for a more adequate coverage of scientific material. This, of course, cannot take the place of a journal for original investigations, but may well prove to be a stimulus for one. It is no secret that such a journal has not yet made its appearance primarily because of financial considerations. There could at no time be any lack of excellent scientific contributions for such a journal of clinical chemistry.

Max M. Friedman, National Secretary

NEW PROCEDURE FOR AWARDS COMMITTEE

The 1953 Ernst Bischoff Award of the American Association of Clinical Chemists will be presented to a recipient during the fifth annual meetings of the Association to be held in Chicago, Illinois in September, 1953. The procedure for the award was determined by the Executive Committee at the Atlantic City meetings.

An award committee of three members, appointed annually, shall receive recommendations from the membership. Based on these recommendations, the committee shall submit three candidates to the honorary members of the Association. The award recipient shall be selected by the honorary members from these three candidates submitted by the award committee.

The award committee for 1953 will consist of Otto Schales, Ochsner Medical Clinic, New Orleans, La. as chairman; Joseph H. Roe, George Washington University, Washington, D.C.; and Fritz Bischoff, Santa Barbara Cottage Hospital, Santa Barbara, Calif.

Members of the Association are advised to consider this matter seriously, and submit their recommendations to the award committee. The prospectus should be as complete as possible, with biography of the scientific and professional attainments of the proposed candidate and a complete statement as to the reasons for the recommendation. The data should be submitted in triplicate to Dr. Otto Schales, 3503 Prytania Street, New Orleans, La. before March 1, 1953.

As is usual in these matters, all correspondence with the award committee will be confidential. The recipient of the Ernst Bischoff Award for 1953 will be announced on or before June 15, 1953.

NECROLOGY

The American Association of Clinical Chemists has been notified of the deaths of two of its members.

Dr. Wilbur R. Tweedy, associated with the Veteran's Administration Hospital, Hines, Ill. died November 23, 1951.

Joseph Hodges, chemist with the Dupray Laboratory, Hutchinson, Kansas.
1953 ANNUAL MEETING

The National Executive Committee has decided to change the time of the Association Stated Annual Meeting from the spring to the fall of the year. This change was made so that interference between the various scientific meetings held in the spring of the year should not deprive the membership from attending their own annual meeting.

The 1953 Stated Annual Meeting of the AACC will be held in Chicago, Ill., the second week of September, in conjunction with the 124th National Meeting of the American Chemical Society. A complete scientific session on Clinical Chemistry will be held in collaboration with the Division of Biological Chemistry.

Members are urged to plan for this meeting and to submit their plans for presentation of scientific papers to the National Secretary, so that a well rounded program may be prepared.

NATIONAL SOCIETY FOR MEDICAL RESEARCH

The AACC Executive Committee has accepted an invitation for membership in the National Society for Medical Research. The NSMR is concerned with the accurate news reporting of medical research and the education of the public in experimental methods used. It has led the fight to provide laboratories with experimental animals by fighting the antivivisection legislation proposed by various States. At present we join more than 250 scientific and civic groups associated in their program.

The Executive Committee authorized the National Treasurer to contribute a nominal sum to the NSMR for their 1952-53 program.

NEW YORK SECTION

As the CLINICAL CHEMIST goes to press, the program committee of the New York Section is preparing for the lecture series of the fall semester 1952-53. The first meeting will be held in October and the announcements will be sent to the members by the Section Secretary. The Executive Committee held a meeting Saturday, Sept. 27 at which time a Nominating Committee was appointed to provide candidates for section offices for the 1952 election.

A. H. T. CO. MODEL H-1

ANALYTICAL BALANCE

A dependable, low priced Balance, of simple and durable construction, for use in educational or industrial laboratories

IMMEDIATE DELIVERY -- PRICE $99.00

ANALYTICAL BALANCE, A. H. T. CO. Model H-1. An improved execution of a time-tested, simplified design, without drawer in base, intended for use in industrial or educational laboratories for quantitative analysis. Especial attention has been given to the design of the beam, beam support, stirrups and stirrup rests so that erecting and cleaning can be accomplished quickly and with minimum danger of damage to delicate parts.

Sensitivity - 1/10th mg with full load.
Capacity - 200 grams in each pan.
Case - Of mahogany, with counterpoised front door, circular level and leveling screws, without drawer in base. Overall dimensions 16½ x 16 x 9½ inches deep.
Beam - Of hardened aluminum, 6 inches long, with oxidized black finish. Graduated in white on both sides of central knife edge from 0 to 5 mg in 1/10 mg divisions.
Knife Edges and Planes - Of agate throughout.
Pans - Of Duralumin. 2½ inches diameter.
Arches - Of Duralumin, height 7½ inches, spread 4 inches.

1812. Balance, Analytical, A. H. T. Co. Model H-1, as above described, with two 5 mg aluminum riders but without weights 99.00
5% discount in lots of 6: 10% discount in lots of 12 or more.

ARTHUR H. THOMAS COMPANY
LABORATORY APPARATUS AND REAGENTS
WEST WASHINGTON SQUARE
PHILADELPHIA 5, PA.
Teletype Services: Western Union WUX and Bell System PH-72
INAUGURATION OF THE PRESENTATION OF THE ERNST BISCHOFF AWARD IN CLINICAL CHEMISTRY

by

H. G. Terwilliger, President, Ernst Bischoff Company, Inc.,
Ivoryton, Connecticut

H. G. TERWILLIGER

Doctor Sobel, President - Doctor Sobotta, Chairman, and Members of the First Award Committee - officers and members of the American Association of Clinical Chemists - guests:

Speaking for myself it is a distinct - a personal honor to be with you this evening at the inauguration of a series of annual events - namely the presentation of the Ernst Bischoff Award of the American Association of Clinical Chemists.

As your association continues to grow, both in membership and leadership, and continues to fulfill its important function of providing those essential services to the medical profession, which will enhance the effective practice of medicine, so this annual award will also grow in significance.

In our ethical pharmaceutical business we have been primarily concerned - first with the clinical investigator interested in the development of new drugs - secondly with the practicing physician who uses the available therapeutic drugs. From these individuals we have become keenly aware - vividly aware - of the role of the clinical chemist.

Here, tonight, we find many others who are interested in the role of the clinical chemist. In less than four years, the nationwide membership of this association has grown to nearly 500, and is constantly increasing, with members who show their belief in this association, members who are the present leaders in this scientific field.

Of course there are always problems for leaders, problems that arise out of the specific need for clinical chemists. I will mention only two of these problems. One - to fit into the organization of the various institutions that need clinical chemists, and at the same time to maintain the required professional prestige and independence are essential. Two - to institute and maintain realistic standards of training and accomplishment to the end that medical service be rendered in a satisfactory professional manner.

Success in mastering these two problems will be of little value unless there are available individuals in sufficient number to adequately staff the many positions which will be opened and to serve as a nucleus for further expansion and growth.

In addition to the competent supervisors and technical assistants, the development of your specialty requires above all research workers, and this means individuals of a high order of intelligence and ability, thoroughly grounded in biochemistry and the related branches of physiology and physics, both experimental and theoretical. Upon these research workers rests the responsibility for developing rapid, accurate methods for the determination of various body constituents, methods which the physician whom you serve, must have at his disposal for the diagnosis and proper treatment of the patient.

Of the utmost importance here is the analysis of extremely small samples by special micro-techniques, usually with the help of electrical or optical instruments. Clinical chemists have already contributed significantly to this great field of micro-analysis, and one may confidently expect that you will continue to do so.

One may also anticipate that in the future, your association will establish its own official journal to serve for the publication of the results of your researches.

We of the Bischoff Company are confident that all your problems will be faced and solved by the exchange of ideas already manifested, and the future growth of your association thus assured.

This confidence is expressed by us in the establishment of the Ernst Bischoff Award in Clinical Chemistry, an annual award of a medal, a scroll, and a sum of money.

It is our hope that the award will be of help in the development and growth of the American Association of Clinical Chemists by giving recognition to outstanding accomplishment in your various activities. We hope this award will encourage all workers in the field, and help to draw other gifted people into your organization.

And now I would like to read the scroll for the 1952 award. It reads:

"The American Association of Clinical Chemists presents the 1952 Ernst Bischoff award to Jos Kahn for representing clinical chemistry at its best and working for its advancement effectively and in collaboration with his associates. Jos Kahn contributed substantially to the medical sciences, both as an individual and as a member of research groups: provided leadership for the clinical staff, and trained a great many assistants in this specialty. He advanced the cause of clinical chemistry as a charter member and in various offices of the American Association of Clinical Chemists. The work of Jos Kahn is identified with the progress of the professional and ethical standards of clinical chemistry."

It is a great pleasure for me to present on behalf of the Ernst Bischoff Company, this medal, this scroll, and the sum of $500.00 to Jos Kahn, chosen by the American Association of Clinical Chemists in recognition of his achievements.

Thank you.
An extrapolation into the future of clinical chemistry leads to the greater adoption of microanalytical methods, not only because these are required to extend the scope of the work to tissues and cells, but also because the micro methods are often faster, require less laboratory space, are less expensive per analysis, and permit the use of smaller samples.

Concerning this last point, we can expect that the clinical laboratory of the future will conduct, routinely, complete sets of blood chemistry analysis on single drops of blood—an advance, already begun in a few laboratories, that will greatly augment the value of clinical chemistry for infant and other patients from whom it is difficult to get the quantities of blood now commonly employed for analysis.

In the present consideration we wish to deal with clinical micro methods of even greater refinement than those ingeniously developed in such laboratories as those of Sobel and Nutelson. In dealing with this matter I won't employ words like "ultramicro" or "submicro" methods, because these terms are poor indeed. Certain methods that today are called "ultra" or "submicro" in some quarters may be refined 1000 times within a few years. Should we then call the newer methods "ultra-ultramicro" or "sub-ultramicro"? Wouldn't it be better to be more explicit, and use the term, milligram method, microgram method, and millimicrogram method to designate methods for the analysis of milligram, microgram, or millimicrogram quantities? Parenthetically, I would add that I also deplore the invention of additional symbols such as μ for microgram, and Λ for micro-liter when they are not needed and are actually less descriptive than the logical standard terms, μg and ml.

The chief analytical techniques now employed in clinical chemistry laboratories are titrimetry, gravimetry, and colorimetry. Titrimetry, convenient enough for common use has already been brought close to the limit of refinement. The burettes and their modifications developed by Lindegraff and Holter, Scholander, Cilfont, and others have scale divisions equivalent to 0.1 μl. The burette developed by Benedict and coworkers using a micro manipulator with a moist chamber on the stage of a microscope was designed for use with volumes of 0.05-0.50 μl. The present limit of titration accuracy of about 0.01 ml will be difficult to better with apparatus that is convenient enough for common use.

Colorimetry has been reduced to the scale where, in instruments such as the Carlsberg, the total gas volume of the reaction vessel is as little as 0.1 μl; a sensitivity of 2 x 10^-5 μl. While instruments of this type are most useful in certain researches, they are not convenient enough for routine use in clinical laboratories. Analysis of the blood gaseous in one drop of blood has been described by Scholander and Roughton, and more recently by Nutelson, with equipment readily adaptable to routine clinical use.

Colorimetry is especially amenable to clinical chemistry usage. The microcuvette of Lowry and Rosey, for use with the Beckman spectrophotometer, permits absorption measurements with a 1 cm. light path on volumes of liquid as little as 50 μl. A refinement of 10 times is obtained with the microscope colorimeter. This is a modification of the instrument designed by Halter and coworkers. The cuvette is a glass or plastic capillary tube (5-15 mm long with a bore of 0.5-1.5 mm diameter) sealed to a microscope slide with a bit of stopcock grease and covered with a microscope cover glass. The volumes of liquid used usually range from 5 to 10 μl. The light beam, made monochromatic with an interference filter or a monochromator, is converted to a parallel beam with a diameter of 0.2-0.4 mm, and is passed through the center of the cuvette to the low power microscope which transmits it to the photocell over the ocular. The observation eyepiece and mechanical stage facilitate the rapid centering of the light beam in the cuvette. Since the cuvettes are quite inexpensive and easily cleaned, many can be used simultaneously to hasten the work. The cost of the Lowry-Bosey cuvette that I saw last was $20.00. The capillary cuvettes cost $.50 or less.

In order to extend the usefulness of the microscope colorimeter we have converted it into an ultraviolet, visible, and near infrared spectrophotometer and the same instrument is also arranged to be a fluorimeter. This versatile apparatus, should serve to make possible a wide variety of analysis of biochemically important constituents in samples of tissue no larger than microtome sections, or fluid samples of a fraction of a drop, with the same degree of accuracy as obtained in the macro procedures.

Flame photometry has established its value for routine sodium and potassium determinations on very small samples of serum. But I believe that it will be displaced in the future by emission spectroscopy. The latter holds the unique advantage that a variety of elements can be determined simultaneously on the same blood sample or tissue biopsy. Recent instrumental improvements and more compact and convenient equipment are rapidly bringing this analytical method to the position of practicality for clinical laboratories. The demonstration by Vallee and Pasieka that spectral lines can be intensified by surrounding the arc with an inert gas such as helium is an important step toward the day when it will be commonplace for you to run routine analysis for sodium, potassium, calcium, and magnesium on the same single drop of serum or bit of tissue which will be your usual sample.

Less immediately applicable, but already nudging their way to a position of consideration are mass spectrometry and radioactivity analysis. With reference to the latter, the measurement of IgM in connection with thyroid function tests is already a routine matter in some laboratories. Induction of radioactivity for analytical purposes by subjecting biological samples to pile bombardment is now in an experimental stage, and this could become an important method for elementary analysis at the histological and cytological level. It is not hard to imagine the future establishment of centers to which samples are sent daily for activation analysis by this method.

A technique of analysis that is now being employed in several biochemical research laboratories, and in industry, and one that holds especially intriguing possibilities for quantitative analysis on intact tissues and cells is x-ray absorption analysis.

The principle of this technique is based on the absorption of x-rays of specific wave lengths by each element. A plot of wavelength against absorption gives a discontinuous curve. The particular wave-length at which the absorption jump occurs characterizes the element. The height of the jump, determined by absorption measurement at wavelengths at each end of the jump measures the quantity of the element. Thus identification and quantitation of elements is possible in solution in a cuvette, or in situ in the tissue and cell. Recording of the transmitted x-radiation can be made by photography, Geiger counter, or ionization chamber when samples are in solution in cuvettes.

For cells, fibers, or tissue sections photographic recording on fine-grained film is used. The resolution is about 1 μ, and for quantitative work by densitometry of the images on the film the resolution is about 2-3μ. Tissue sections 2 to 15 μ thick can be used for analysis of nitrogen, carbon, oxygen, phosphorus, and sulfur. Mineral salts in bone sections can also be determined. When cuvettes are employed, volumes of liquid as small as 0.2 μl can be used. A feature of the technique is the fact that the sample is not used up in the analysis.

(Continued on following page)
so that the same sample can be subjected to repeated analysis for different elements and is still available for morphologic or other studies at the end.

The exploitation of x-ray absorption for biochemical analysis has derived chiefly from the work of Engström at the Institute for Cell Research in Stockholm. In addition to elementary analysis Engström has employed x-ray absorption for the determination of dry weight of cells and cell parts. This has been accomplished by using a polychromatic beam of soft x-rays having wavelengths in the region of 8°A. These wavelengths are absorbed by the chief elements of tissue, i.e. carbon, nitrogen, and oxygen (hydrogen has little absorption and a calculation can be made to correct for it). The concentrations of other elements that occur in soft tissue, e.g. phosphorus, sulfur, chlorine, calcium, etc. are too small to interfere under the conditions chosen.

Measurement of dry weight of tissue constituents down to 2-3 μg in size is in itself of limited value, although it is very useful as a basis of reference for analysis of biochemical substances and as an index of certain secretory and other cell functions. However, more extensive possibilities exist. The determination of total mass, before and after treatments designed to remove specific substances, makes available analytical methods for many constituents. Thus, treatment with selected solvents can be used for the removal, and therefore the analysis, of particular lipids, or specific enzymes can be employed to remove certain substances for similar analytical purposes.

Other micro techniques already available will find their way into clinical laboratories. Without attempting to discuss more of them, we should just mention paper chromatography. By means of the microscope spectrophotometer and fluorimeter previously described, quantitative analysis of the separated spots of biological substances can now be performed in many new instances.

It must be evident from our little trip on the currents of methodology that we have had to extrapolate rather little after all to reveal many new possibilities for the future of clinical micro chemical analysis. Nothing new has been conjured up that isn’t already being used or explored for application in non-clinical laboratories.

Discussing the presentation of the first Ernst Bischoff Award in Clinical Chemistry, are (left to right) Dr. Edward Harvill, Director of Research, Ernst Bischoff Co., Professor David Glick, University of Minnesota Medical School, who delivered the Ernst Bischoff Lecture, Mr. H. G. Terwilliger, President of the Ernst Bischoff Co., and Dr. Harry Sobotka, Chairman of the AACC first Award Committee.

(Courtesy of Chemical & Engineering News)

(Continued from page 1)

Dr. Sobel then introduced Mr. H.G. Terwilliger, President of the Ernst Bischoff Company, Ivoryton, Connecticut. Mr. Terwilliger pointed out the importance played by the Clinical Chemist in solving the many chemical problems which arise every day in the practice of the medical arts. In order to encourage and reward the Clinical Chemist, who has distinguished himself in "Research" and "Service", the Ernst Bischoff Award in Clinical Chemistry has been established and is to be given annually to a chemist chosen by an Award Committee of the AACC. Mr. Terwilliger then presented the first award, posthumously, to Dr. Jos Kahn. Dr. Kahn was, before his untimely death, at Maimonides Hospital, Brooklyn, N.Y. He worked unflinchingly to further the development and growth of Clinical Chemistry and his efforts, in this field, are well known to all. The award was accepted, for Dr. Kahn's family, by Dr. Harry Sobotka, who was Chairman of the First Award Committee. Dr. Sobotka described the especially designed bronze medal and scroll and pointed out that the award also includes a check for the sum of $500.

Dr. Sobel then introduced Dr. David Glick, Professor of Physiological Chemistry, University of Minnesota Medical School, who was chosen to give the first Ernst Bischoff Lecture. His subject "An Extrapolation Into The Future of Clinical Microanalysis" was of complete and absorbing interest to everyone.
RAY ABERNETHY, Chief Toxicologist, Los Angeles County Coroner's Office, was host to the local section on May 5 for a meeting and inspection at his laboratory. Mr. Abernethy discussed the "Role of the Toxicologist".

The toxicologist must provide such analysis as will enable the coroner to establish the cause of death. Whereas 25 years ago he was primarily concerned with analysis for such poisons as arsenic, cyanide, nicotine and strychnine, today he is much occupied with analysis for alcohol, barbiturates and carbon monoxide. In addition to his analytical duties, he must train police officers in matters pertinent to the efficient identification of poisons; close observation and notations of poisons, drugs, prescriptions and associated items at the scene of death, and proper collection and labeling of these items for subsequent analysis.

Important techniques now used in Mr. Abernethy's laboratory include sublimation and melting point determination, ultraviolet absorption spectrophotometry and X-ray diffraction; and the sense of smell finds practical value in the preliminary identification of several common substances (cyanide, acetone, paraldehyde, etc.).

Mr. Abernethy gave particular attention to the identification and quantitative determination of individual barbiturates by ultraviolet absorption spectrophotometry. His procedures are based on the principle that an extract containing a barbiturate will demonstrate three different and distinct absorption spectra at three different pH values. Any set of three spectra will be characteristic for any one barbiturate, thus providing positive identification. Then the absorption at a proper wave length can be measured to provide the quantitative determination. Measurements are made in the wavelength range from 225 to 265 m. u.

PHILADELPHIA SECTION

The Philadelphia Section of the American Association of Clinical Chemists plans to have six scientific meetings during the 1952-53 season.

On October 29, Mr. James J. Moran of the Consumer Research Department of the Kimble Glass Company will present a lecture on "Laboratory Glassware," in which he will discuss the manufacture, use, and care of glass laboratory apparatus. Mr. Moran has been with the Kimble Glass Company since 1920 and is eminently qualified to discuss the subject of his lecture.

For the November 25 meeting, Dr. James Walker, Jr. will speak on "Fluid Balance." Dr. Walker holds a John and Mary R. Markle fellowship in the Department of Surgical Research of the University of Pennsylvania, and for a number of years he has been active in the study of problems of fluid balance.

Dr. Harry Shay, Director of the Fels Research Institute of the School of Medicine of Temple University, will give a lecture on "Liver Function" at the January 27 meeting. Dr. Shay was a member of the founders group of the American Board of Gastroenterology, and one of his main fields of specialization has been gastrointestinal physiology.

Final arrangements have not been made for lectures that are planned for February, March, and April.

Anyone not on our mailing list to receive announcements for these meetings may obtain additional information by writing to the secretary, Albert B. Sample at the Bryn Mawr Hospital, Bryn Mawr, Pa.

The membership as of September 13, 1952 follows:

- Honorary members: 6
- Full members: 291
- Associate members: 121
- Members in arrears one year: 24
- Members in arrears two years: 13
- Total membership: 455

The Executive Committee, on behalf of the Association, extends thanks to the American Chemical Society and to the Division of Biological Chemistry of the Society, for arranging the scientific program of clinical chemistry and the dinner at which the Ernst Bischoff Award was presented at Atlantic City.

Committee appointments approved included:

- Program Committee: Marschelle H. Power, Otto Schales, and Warren M. Sperry.
- Ernst Bischoff Award Committee: Fritz Bischoff, Joseph H. Roe, and Otto Schales (Chairman). This Award committee will receive recommendations from the membership (details to be published in the CLINICAL CHEMIST) and from these recommendations three candidates will be selected. The honorary members of the Association shall select one of these as the Award recipient.

Michael Somogyi of St. Louis was designated as representative of the Association to the AAM.

The Association accepted an invitation for membership in the National Society for Medical Research. The Society is concerned with the problems of accurate research reporting, education of the public in scientific matters, and removing obstacles to research such as antitrust legislation. At present membership of 250 scientific and civic groups are associated in this program. The National Treasurer was authorized to contribute a nominal sum to the NSMR for the next year.

The invitation by the American Pharmaceutical Association for the AACC to collaborate in the revision of the sections on clinical laboratory preparations of the National Formulary could not be accepted since it was felt that such a project would conflict with the program of the Association. The National Secretary was directed to thank the American Pharmaceutical Association for this invitation.

A report of the proceedings in Paris held in July, 1952 concerning the formation of an International Federation of Clinical Chemists was presented. The minutes of that meeting are to be published in the CLINICAL CHEMIST. It was moved, seconded and passed that the AACC take no action on the matter at this time.

Respectfully submitted,

Max M. Friedman, National Secretary
ADRENAL GLYCOGEN STUDIES IN THE GUINEA PIG AND THE ALINE RAT. Nancy Lee Noble and Evangeline Papageorge, Department of Biochemistry, Emory University School of Medicine, Emory University, Ga.

Adrenal glycogen values were established for normal, young, adult, male guinea pigs and albino rats, and the effect of altering the nutritional state was investigated.

Glycogen was isolated by the usual precipitation with alcohol from a potassium hydroxide digest of the tissue, and was then assayed colorimetrically by use of the anthrone reagent without previous hydrolysis. The technique was reproducible as applied to analysis of samples containing 20 to 40 micrograms of glycogen, and values obtained agreed closely with those found by Nelson's reducing sugar method after acid hydrolysis of the isolated glycogen.

Guinea pigs have about 25 mg. of glycogen per 100 grams of fresh gland. This value is remarkably constant among individual animals and is not significantly altered either by fasting or by decreasing the ascorbic acid intake even to ascorbic levels.

Albino rats have a much higher concentration of adrenal glycogen which can be altered by varying the nutritional state. Animals fasted for periods of 6 to 48 hours have about 200 mg. % of adrenal glycogen. Nonfasted animals, or 24-hour-fasted rats given glucose have only about one-half of the concentration found in 24-hour-fasted controls and the decrease is highly significant statistically.

ESTIMATION OF 7-HYDROXYCHOLESTEROL, 7-DEHYDROCHOLESTEROL, AND BILE ACIDS IN SERUM. Albert E. Sobel, Morris Goldberg, and Solomon R. Slater, The Department of Biochemistry, The Jewish Hospital of Brooklyn, Brooklyn 16, N. Y.

Preliminary to studies of changes in blood sterols in arteriosclerosis, a method has been developed for the quantitative estimation of 7-hydroxycholesterol, 7-dehydrocholesterol, and bile acids in serum.

The nonsaponifiable fraction of 2 ml. of serum is dissolved in acetone-alcohol and treated with an excess of aqueous digitonin until the water content is 54%. The precipitated digitonides are washed with lactamide, ether and ether, split with pyridine, and extracted twice with petroleum ether. The extract is washed with water and evaporated to dryness. The residue is dissolved in ethyl alcohol and 7-dehydrocholesterol determined by both ultraviolet absorption and the Rosenheim - Callow reaction. A second serum residue is dissolved in glacial acetic acid, and 7-hydroxycholesterol is determined with activated glycerol dichloroform. Total sterol is determined by the Liebermann-Burchard reaction on a 1/25 aliquot of dissolved sterol residue. Serum bile acids are fluorometrically evaluated by a micromodification of the Baker et al. method [Proc. Soc. Exp. Biol. Med., 76, 216 (1951)].

Normal adults contain 0.3 to 0.8 mg. % of 7-dehydrocholesterol and 7-hydroxycholesterol. Bile acids ranged from 1 to 3 mg. % Recovery of these sterols added in amounts found in normal serum were within ±3.0 of added values.

A RAPID PRESUMPTIVE TEST FOR THE DETERMINATION OF ALCOHOL IN BLOOD AND URINE. Irving Sunshine and Robert Norden, Institute of Pathology of Western Reserve University, University Hospitals of Cleveland and the Cuyahoga County Coroner's Laboratory, Cleveland, Ohio.

A rapid method for determining the ethyl alcohol concentration of body fluids would be extremely useful both to the staff of the hospital emergency room and to those concerned with vehicular traffic regulation and accident prevention.

Many potentially preventable deaths from trauma or disease have resulted from the erroneous assumption that the odor of an alcoholic beverage combined with coma or with slurred speech and a staggering gait is acceptable evidence that the disability is due to alcoholic intoxication. The desirability of a rapid and simple method for testing for alcohol is obvious. Such a technique is the subject of this discussion.

A 0.5 ml. sample is placed in the outer chamber of the Conway unit; in the center chamber is placed 2.0 ml. of potassium dichromate solution. The unit is then sealed and placed in a stream bath or oven at 100°C. for 20 minutes. The color of the solution in the center chamber is then compared with suitable standards. It is necessary, as many as 20 samples can be run concurrently and completed in two hours. In this way, one may rapidly and simply determine whether a given individual is or is not "under the influence."

A SIMPLE TEST FOR URINE BILIRUBIN. Alfred H. Free and Helen M. Free, Biochemistry Section of the Miles-Ames Research Laboratory, Elkhart, Ind.

The detection of bilirubin in urine is a very useful aid in recognition and treatment of certain liver diseases. A test has been devised which is extremely sensitive and specific for bilirubin. It is based on the interaction of bilirubin with a solid stable diazonium salt to produce a bright blue or purple color. Several such diazonium salts have been tested but the one which works most satisfactorily is p-nitrobenzene diazonium p-toluenesulfonate. This compound is conveniently incorporated into a solid test reagent by mixing with sulfosalicylic acid and sodium bicarbonate. This solid reagent is used as a powder or as a tablet. The test is carried out by placing a few drops of urine on an absorbent test mat of cellulose and asbestos. The solid reagent is then placed on the moistened area and flooded with two drops of water. The characteristic color develops on the test mat within 30 seconds if bilirubin is present.

A large number of tests have been carried out with normal urines and with urines containing bilirubin. The method is somewhat more sensitive than other commonly used urine bilirubin tests. No interfering substances have been encountered in urines from a large hospital population.

A MICRO METHOD FOR THE DETERMINATION OF PHOSPHORUS IN SERUM, URINE, AND STOOL ASH. Hertha H. Taussky and Ephraim Shorr, with the technical assistance of Gloria Kurzmann, Department of Medicine, Cornell University Medical College, The Russell Sage Institute of Pathology, and the New York Hospital, New York City.

The method is based on the suggestion of Sumner that the phosphomolybdic acid formed during the first step in the analysis of phosphorus be reduced by ferrous sulfite instead of the conventional ammoniumsulfite acid.

The sensitivity of the method is from 1 to 40 micrograms. Proteins are precipitated from 0.2 cc. of serum with trichloracetic acid. Protein-free serum filtrate, standard solution, urine, or stool ash solutions are pipetted directly into the colorimeter tubes and the color reaction is carried out in a total volume of 5 ml. The blue color developed is stable for at least 1 hour. The color is read in a Klett-Summerson photoelectric colorimeter with filter No. 66.

Recovery experiments and comparisons with Flase and Rubbo's method are in good agreement.

A METHOD FOR THE DETERMINATION OF CALCIUM 40 AND CALCIUM 45 IN BIOLOGICAL MATERIAL. William P. Norris and Blanche J. Lawrence, Argonne National Laboratory, Chicago, III.

In the study of dynamic systems with radioactive tracers, the specific activity, that is, the ratio of radioactive to stable element, is a most useful quantity. A method has been developed in which the
Considerations of the type of digestion acids and optimum acid concentration as well as plating time for polonium deposition are discussed.

A NEW COLOR REAGENT FOR THE DETERMINATION OF HEXOSES. Bernard Klein and Milton Weisman, Biochemistry Laboratory, Veterans Administration Hospital, Bronx 58, N. Y.

This paper reports a new color reaction for the identification and determination of hexoses in the presence of pentoses. This test is based upon the action of a strong sulfonic acid solution of chromotropic acid on the hexoses to produce a violet color. The reaction depends on the concentration of hexoses to 5-hydroxymethylfurfural and splitting of the methyl group to form formaldehyde which reacts with chromotropic acid. This mechanism is supported by the identical absorption spectra given by the chromotropic acid reaction products of glucose, 5-hydroxymethylfurfural, and formaldehyde and the isolation and identification of formaldehyde as the 2,4-dinitrophenylhydrazone (melting point, 180°C). Under these circumstances, pentoses which form furural, incapable of splitting off formaldehyde, do not react. The common disaccharides lactose, maltose, and sucrose react with the chromotropic acid reagent. The intensity of color produced is related linearly with the concentration of the hexose used but the yield of formaldehyde produced is not quantitative when calculated on a molar basis, as this reaction is probably an alternate pathway for the decomposition of hexoses in strong acid.

A NEW COLOR REAGENT FOR THE DETERMINATION OF HEXOSES. II. THE DETERMINATION OF GLUCOSE IN BLOOD SERUM. Bernard Klein and Milton Weisman, Biochemistry Laboratory, Veterans Administration Hospital, Bronx 58, N. Y.

The application of the new hexose reagent, chromotropic acid in 15 N sulfonic acid, to the determination of glucose in blood is presented. One ml of a to 10 protein-free filtrate [Somogyi, J. Biol. Chem., 160, 69 (1945)] is heated for 30 minutes in a boiling water bath with 5 ml of reagent (2 mg per ml), cooled and diluted to 10 ml, and the optical density read in a spectrophotometer at 570 μ. The concentration is determined from a calibration curve prepared from pure glucose solutions. The calibration curve is linear from 50 to 300 mgs. per 100 ml. The results obtained compare well with those obtained by the Somogyi technique.

ELECTROPHORETIC AND CHEMICAL SERUM PROTEIN FRACTIONS IN PULMONARY TUBERCULOSIS. Abraham Soffer and Irwin Crenkels, Biochemistry Department, Division of Laboratories, Jewish Sanitarium and Hospital for Chronic Diseases, Brooklyn 3, N. Y.

In previous publications [J. Clin. Invest., 31, 1-22, (1955)] quantitative protein flocculation methods were described for the determination of serum gamma globulins and a new biochemical ratio, the total serum-gamma globulin/gamma-globulin cleft-gamma globulin was introduced. This latter reflects changes in the beta globulin fraction.

The present study deals with the application of these procedures to the sera of 100 patients with pulmonary tuberculosis in various stages. The results in 50 cases were compared with those obtained by salt fractionation and electrophoresis.

The gamma globulin values increased and the T.S./G.C. ratio decreased with increasing severity of the tuberculous process. When followed serially, deteriorating patients showed progressively elevated gamma globulin values and decreasing T.S./G.C. ratios. Patients who were improving showed converse changes.

All the electrophoretic globulin fractions were elevated in the far advanced group. However, the alpha-2 and beta globulins remained elevated in the arrested group in patients treated with streptomycin plus P.A.S. Both chemical and electrophoretic A/G ratios were shown to decrease significantly with the increasing severity of the disease.

Preliminary work with a group of tuberculous patients being treated with isonicotinic acid derivatives indicates that these serum protein studies may be useful for the objective evaluation of the progress of the patient while under therapy.

IN VIVO CONVERSION OF CAROTENE TO VITAMIN A IN ALLOXAN DIABETES. Albert E. Sobel and Abraham Rosenberg, Departments of Chemistry, Jewish Hospital of Brooklyn and Polytechnic Institute of Brooklyn, Brooklyn, N.Y.

Litter mate Wistar rats (11 Litters) were depleted of vitamin A stores. Diabetes was produced in part of each litter by subcutaneous injection of alloxan. 2000 μg of carotene was administered to each animal in both the diabetic and control groups, and 3 days later, the liver was analyzed for stored vitamin A. The liver vitamin A of the alloxan-diabetic animals was one fourth that of the control litter mates. To another 10 litters similarly treated, 1000 μg of vitamin A was given. The liver vitamin A of the diabetic animals was 78% of that of the controls, indicating that absorption is practically the same in both groups, and the differences observed with carotene represent a marked defect in ability of the alloxan diabetic animal to convert provitamin A to vitamin A.

Studies in vivo with the isolated intestinal wall confirmed the above conclusion.
ENZYMES AND THE PRESERVATION OF TRANSFUSION BLOOD. Otto Schade, Chemical Research Laboratory of the Alton Ochsner Medical Foundation, and the Department of Biochemistry, Tulane University School of Medicine, New Orleans, La.

Plasma may be stored safely for long periods of time, but whole human blood, even under optimal storage conditions, is considered suitable for transfusion purposes during the first 3 weeks after collection.

There occurs, during storage, a gradual change in the red cells so that they lose the ability to survive after entering the circulatory system of the recipient. The decisive chemical events responsible for gradual deterioration are not known. Enzymatic processes might be a major factor in this change, especially since a progressive increase in osmotic fragility on exposure to hypotonic sodium chloride solution.

Consequently, the ability of red cells to survive is of great importance in the transfusion of blood. The results of recent studies indicate that the loss of viability of red cells stored for transfusion purposes is due to a gradual increase in osmotic fragility. The addition of sodium chloride solution to the red cells before transfusion appears to decrease this fragility.

Using this in vitro fragility test as a measure of red cell deterioration during storage, the effect of enzyme inhibitors on the rate of development of osmotic fragility was investigated. A variety of inhibitors of lipases, proteases, and peptidases was tested. The results indicate that the addition of enzyme inhibitors to stored red cells may delay the development of osmotic fragility and thus increase the survival time of transfused blood.

LABORATORY PRACTICE IN SWITZERLAND

From Tolentino: Pedagogic Impressions in Switzerland Minerva, 3: 707, December 15, 1951.

In the course of a description of the Kanterspital in Zurich directed by Prof. Fanconi, the author describes the duties of the clinical assistants. He then continues:

"The one thing with which the aids and assistants do not occupy themselves in the laboratory which is completely entrusted to the technical specialists (numerous specialized technical specialists perform all the chemical investigations, the myograms, blood metabolism and electrolyte investigations, whereas the common bacteriological and serological investigations are sent to the University Institute of Hygiene. The concept that the physician should not occupy himself with the laboratory, I have heard approved in other places too. The Translator.) Prof. Wurmann (A physician himself) stated in a lecture on electroencephalography that the 'time has passed where the physician could afford the luxury of making, at the end of his rounds, his little discovery in the laboratory,' and indeed the latter in the Medical Clinic is in charge of Dr. Wunderley, a chemical engineer. This can actually constitute an advantage, since the physician devotes more time to the study of the sick, implying the exceedingly practical task to the specialized medical school to turn out good physicians and not biologists and chemists.'

After pointing out certain disadvantages, mostly of local geographic nature, Dr. Tolentino concludes:

"It can be said that the laboratory of the Kanterspital functions superbly in the fields with which it is entrusted, a proof of which is the recent introduction of chromotography for aminoaciduria."

Most promising results so far were obtained with 10-(2-dimethylaminosulfophenyl)phenothiazine, which was first introduced as an antihistamine. Marul et al. found that it inhibits trypsins and papains. It was recognized as a good preservative for tissues, and Halpern et al. investigated its retarding effect on morphological changes in stored blood, but no studies of its effect on the development of osmotic fragility were described.

In our experiments, ACD blood from 10 different donors showed an exposure to 0.6% sodium chloride solution after 21 days storage by 2% and after 42 days 20% to 38% hemolysis. The addition of optimal amounts of the phenothiazine derivative (0.02 millimole per liter) to portions of the same blood samples retarded the development of osmotic fragility to a considerable degree. After 21 days there was observed 0.4 to 4.1% and after 42 days 0.6 to 4.5% hemolysis on exposure to 0.6% sodium chloride solution.
PROBLEMS OF LIFE
by Ludwig von Bertalanffy
John Wiley & Sons – 216 pages – $4.00

"In our time," writes Ludwig von Bertalanffy in his new book, Problems of Life, "a fundamental change of scientific concepts has taken place. The revolutions in modern physics are widely known. They have led, in the relativity and quantum theories, to a radical reform of physical doctrine, outrunning the progress made in centuries of the past. Less obvious, but perhaps not less significant in their consequences, are the changes that have taken place in biological thought, changes that have led both to a new attitude toward the basic problems of living nature and to new questions and solutions."

The first attempt to outline the modern view from the standpoint of the biologist is now available in Problems of Life, published in August by John Wiley & Sons. A thorough and logical survey of basic biological problems and laws within the framework of the famous author's original "organismic conception," the volume gives a new unitary theory of biology, based on concrete research and progressing to the fundamental and philosophical problems.

"The problem of life," Bertalanffy states, "is one of organization. We find that all parts and processes are so ordered that they guarantee the maintenance, construction, restitution and reproduction of organic systems." He further explains that the task of biology is to establish the laws governing order and organization within the living. "These laws," he writes, "are to be investigated at all levels of biological organization - at the physico-chemical level, at the level of the cell and of the multicellular organization, and finally at the level of communities consisting of many individual organisms."

After advancing the idea of the organism as an integrated unity of interdependent functional activities, Bertalanffy covers the modern concepts in the various levels of organization, from high-molecular and colloidal chemistry, viruses and genes, cytology and histology, to applied biology and the supra-individual units of life. The relation of these concepts to embryology, morphology, genetics, evolution, behavior, medicine, psychology, sociology, and other fields is also considered.

The author then examines the possibility of stating exact and quantitative laws for biological phenomena, basing his discussion on the theory of open systems as he has developed it. The principles of biological epistemology are also treated, with discussions of organismic methodology, laws in physics and biology, and the boundaries between science and metaphysics. In his evaluation of the unity of science, Bertalanffy proposes a General

NEW APPARATUS

PRECISION IONOGRAPH

Ionography is electrophoresis on filter paper and depends on the movement of charged particles, both ions and colloids, in an electric field. Precision Scientific Company's new IONOGRAPH separates and identifies materials such as amino acids and proteins, inexpensively and results are in good agreement with classical methods. Biochemical, clinical and pharmaceutical laboratories are offered a fast and versatile tool which can be operated by the average technician. The IONOGRAPH can use seven filter paper strips, of varying length, as well as wide sheets for two-dimensional work.

Wide range potential - 0 to 2500 volts, current 0 to 30 ma., offers fast separation with complete control. An insulated cabinet allows test temperatures from room to 0. Thermal media circulated through the double-walled cabinet and around buffer vessels from an outside source regulate temperature control. Water saturated helium introduced at a fitting forms a gas envelope to remove interfering heat effects.

Agar bridges prevent pH changes at the electrodes from invalidating test results. A built-in leveling device avoids capillary siphoning of buffer solution. Safety switches prevent accidental electrical contact. Dimensions: 11" h x 39" w x 32" d. Immediate availability from Precision Scientific Company, 3737 W. Corland St., Chicago 47, Ill.

System Theory as a super-structure of science; here, general principles are formulated that apply to entities of a different nature and account for the parallelism in the modern development of physics, biology, psychology, sociology, and other branches of science.

Research professor and director of biological research at the University of Ottawa, von Bertalanffy has done theoretical and practical work on his "organismic conception" for twenty-five years. After receiving his Ph.D. at the University of Vienna, he became a professor there and later a member of the medical examination board. As a fellow of the Rockefeller Foundation, he traveled through the United States and lectured at many American universities. His numerous contributions to biology, physical chemistry, medical theory, and related sciences, include eleven earlier books and many scientific papers.

Problems of Life contains 216 pages and is priced at $4.00.

September 9, 1952

PATRONIZE OUR ADVERTISERS!

MICRO SIZE STOPCOCK ADAPTERS

New Micro Size Adapters for stopcocks of 2 mm. bore or less, have recently been introduced by the Emil Greiner Company, 20-26 N. Moore St., New York, N.Y. With the introduction of the new Micro Size Adapters, this company now provides stopcock adapters to cover the full range of laboratory stopcocks. By selecting the proper size Universal Stopcock Adapter, any glass stopcock in the laboratory can be converted into a pressure tight stopcock.

These new Universal Stopcock Adapters will be of unlimited benefit to all laboratory workers who require pressure stopcocks for burets, gas sampling, measuring apparatus, etc.

Exceptionally strong and rugged with a functionally modern contour, the new Micro Size Adapters - as with all adapters in the Emil Greiner Universal line - eliminate the annoyance of leaking stopcocks and the high cost of special pressure stopcocks. They are manufactured completely of corrosion-resistant materials.

The adapter consists of an internal adjustable clamp made of corrosion-resistant spring brass, nickel plated, which grasps the stopcock plug and to which is fastened an aluminum screw. Fitting around this clamp is an aluminum barrel which rests against the shell of the stopcock. A beryllium bronze coil spring fits around the aluminum screw and two aluminum nuts are used to fix the compression in the spring against the aluminum barrel. An aluminum washer is used on the small sized stopcocks in the range of the adapters.

NEW MEMBERS ELECTED BY THE EXECUTIVE COMMITTEE

July 1952

Emanuel L. Mandel
Bernard H. Abravanel
Stanley Morganstein
Harold Schonberg
Victor Schelling
Armard J. Courchaine
Milton M. Cohen
Joseph H. Roe
Charles L. Fox Jr.
Emmett B. Carmichael
Heinz T. Kay
Paul Joseph Voller
Gloria Getchell
Helene Thomas Bennett
Yuma, Ariz.
Robert L. Shiroto
Lawrence C. Kier
Adeline J. DiPietro
Vera A. Thompson
Jack D. Pinney
Vivian L. Anderson
Ella Perkins
Atlanta, Ga.
Hyattsville, Md.
Brooklyn, N.Y.
Brooklyn, N.Y.
Detroit, Mich.
Holmes, Pa.
Jamaica, N.Y.
Washington, D.C.
New York, N.Y.
Birmingham, Ala.
Los Angeles, Calif.
Alexandria, Va.
Los Angeles, Calif.
Dobbs Ferry, N.Y.
Iowa City, Iowa
Cambridge, Mass.
Brooklyn, N.Y.
New York, N.Y.
Waltham, Mass.
 Lansdown, Pa.
“ELCONAP” AUTOMATICALLY CONTROLLED CONSTANT TEMPERATURE INCUBATORS

Features

1. OPERATING SENSITIVITY $\pm 0.25^\circ$C
2. Scientifically determined DIRECTED TEMPERATURE DISTRIBUTION
3. COMBINATION WET AND DRY INCUBATION
4. Durability, simplicity and Economy.
5. Accessibility to all parts for repairs without dismantling or returning apparatus to factory.
6. Guarantee of five years against mechanical defects.
7. All wiring and electrical devices approved by Board of Fire Underwriters.

TRIPLE WALL CONSTRUCTION

Cabinets are of special selected asbestos transite double wall with non-hygroscopic glass wool insulation between them and perforated metal side panels acting as diffusing plates for increased uniform heat distribution. The outside Asbestos Transite surfaces are painted armorized gray with seams protected in a polished stainless steel frame to prevent heat losses. Hinges and door locks are of brass, nickel plated. The adjustable perforated metal shelves have runners for loading while partially withdrawn and guards protecting air ducts. The inner glass door is encased in a flexible polished stainless steel frame forming an expansion seal when the Incubator is in operation and protection against breakage in transit. No cumbersome gaskets are required at any time.

ORDER TODAY Type “B”, #7030.......................$195.00
INTERNATIONAL ASSOCIATION OF CLINICAL BIOCHEMISTS

Dr. Warren M. Sperry, American member of the Commission on Clinical Chemistry of the Section of Biological Chemistry of the International Union of Pure and Applied Chemistry, and also representative of the American Association of Clinical Chemists to the first exploratory meeting of clinical biochemists held at Sorbonne University, Paris on July 24th, 1952, reported to the AACC Executive Committee at a meeting held November 20th.

Dr. Sperry, with much experience in the mechanics of international scientific organizations, gave members of the committee a well rounded background of such type organizations, together with his ideas of organization functions, duties, financing and methods of membership.

It was proposed in Paris that an International Association of Clinical Biochemists be organized under the auspices or closely associated with the International Congress of Biochemistry. The Commission on Clinical Chemistry of IUPAC would act as the nucleus. In studying the ten resolutions past at the Paris meeting, the National Executive Committee passed the following resolutions.

(Minutes of the Paris meeting are published on page 8.)

1. The AACC approves in principle the participation in the proposed International Association of Clinical Biochemists.

2. The AACC will appoint a representative to the Committee on invitation of the Commission on Clinical Chemistry of IUPAC.

3. It is the sense of the AACC that this international association ultimately be a federation of national societies rather than an association of individual members, with due regard to safeguarding the participation of clinical chemists in those countries that have no national societies.

4. The name be changed to the International Association of Clinical Chemistry rather than the International Association of Clinical Biochemists.

5. The above resolutions to be forwarded to the Commission on Clinical Chemistry.

(Continued on page 4)
QUID NUMS

Nelson F. Young, Richmond, Va., was appointed Editor-in-Chief for Clinical Chemistry Methods Vol. II. Dr. Young was on the editorial board for Vol. 1, and will organize the committee for the second volume.

Kurt M. Dubowski was appointed chairman of a committee consisting of Irving Sunshine and Harold D. Appleton, which will explore the possibility of publishing a volume on toxicological methods as part of the method series sponsored by the AACC.

Kurt G. Stern, Professor of Biochemistry, Brooklyn Polytechnic Institute and Chairman of the New York Section, was awarded the Pasteur Medal for contributions to biochemistry at the 2nd International Congress of Biochemistry held in Paris during July.

Dr. Donald D. Van Slyke, Honorary Member of the AACC, was designated to receive the Fisher Award in Analytical Chemistry, sponsored by the Fisher Scientific Company and administered by the American Chemical Society.

CERTIFICATION

Dr. Cecilia Riegel, President of the Philadelphia Section of the AACC announced to the membership, at the business meeting, held October 28, that the status of applications for certification by the American Board of Clinical Chemistry, Inc. is as follows:

- Application forms requested: 750
- Applications received: 340
- Certificates granted: 121
- Certificates declined: 70
- Pennsylvania certificates: 14

The above figures were supplied to her by Dr. Joseph W. E. Harrisson, Secretary-Treasurer of the Board.

NEW PUBLICATION POLICY BEGINS WITH NEXT ISSUE

With the increase in the Association's dues earmarked for expansion of THE CLINICAL CHEMIST, Harold D. Appleton, Chairman of the Editorial Board, presented plans for expansion beginning Vol. V, 1953. All recommendations were approved by the National Executive Committee.

THE CLINICAL CHEMIST was taken out of the newsletter class and designated as the "Official Publication of the American Association of Clinical Chemists". The publication will be styled similar to SCIENCE where both news and scientific articles exist in the same publication.

A campaign to increase advertising is now in progress by the mail canvass of 500 leading manufacturers of scientific equipment. It is hoped that the individual members will bring this publication to the attention of their apparatus dealers and distributors.

THE CLINICAL CHEMIST has invited leading researchers to write review articles on scientific topics of current interest to clinical chemists. At the moment four series have been accepted.

1. Application of Ionography to Clinical Chemistry. Hugh J. McDonald

These large review articles will be published serially. Each individual paper will give a complete phase of the problem.

Besides invited articles, the pages of THE CLINICAL CHEMIST are now open for papers on original research. The publication has been submitted to Chemical Abstracts for abstration of published scientific articles.

PATRONIZE OUR ADVERTISERS!
POST OFFICE RETURNS

With the cooperation of our readers we hope to be able to trace the following members of our organization. Mail is being returned to THE CLINICAL CHEMIST and to the National Treasurer. Names with last known mailing address are published below. If any member recognizes a friend or associate and knows of their new associations, please notify THE CLINICAL CHEMIST, P.O. Box 123, New York 21, N.Y.

Harold Murdock, 915 Delaware Avenue, Buffalo, New York
Henry Wishinsky, 2800 8th Street South, Arlington, Va.
Dorothy Ann Koenig, 5711 Woodlawn, Chicago, Ill.
Donald C. Wood, 120 North Mechanic Street, Carthage, N.Y.
A. Sliket, 14 Morton Street, New York 14, N.Y.
Paul Joseph Vallmer, Washington, D.C.
Lester J. Schultz, V.A. Hospital, Montrose, New York
Herbert E. Thompson, Hotel Pick-Ohio, Youngstown 1, Ohio
Dorothea T. Harris, 133 West 74th Street, N.Y.C.
William R. Brown, Heinemann Hospital, Philadelphia, Penn.
H. Theo. Hanson, Wisconsin General Hospital, Madison, Wisconsin
William Spivack, 5723 Catherine Street, Philadelphia 43, Penn.
Walter E. Lox, Good Samaritan Hospital, Phoenix, Arizona
Dorothy M. Feinberg, 106 Revere St., Boston, Mass.

CHICAGO SECTION MEETING
January 30th, 1953

The January meeting of the Chicago Section will be held on Friday, January 30th, 1953 at 8 P.M. at the Mount Sinai Hospital, 2750 West 15th Place. Dr. I. Davidson, Pathologist, Mount Sinai Hospital and Chairman of the Department of Pathology, the Chicago Medical School will speak on "Rh". The meeting is open to the membership as well as all interested persons.

A.H.T. Co. Specification

CONSTANT TEMPERATURE BATH —

With operating sensitivity well within ±0.005°C

CONSTANT TEMPERATURE BATH, INFRARED, Research Model, A.H.T. Co. Specification. Utilizes lagless, radiant heat from a reflector-type, infrared bulb with red bowl, operating intermittently through relays and a mercury-in-glass thermoregulator, and provides operating sensitivity beyond that heretofore available with metallic heating units in this type of outfit. The bath offers full visibility and ample unobstructed working space for experimental work.

Temperature range, using only the infrared bulb, is to 45°C, and can be extended to 55°C at normal room temperatures by means of 100-watt auxiliary heater of immersion type. Operating sensitivity in this range is well within ±0.005°C.

The infrared bulb, 250 watt capacity, is mounted in a Stainless steel housing with heat resistant plastic switch panel, with relays and individual switches for power, stirring motor and auxiliary heater. A metal baffle in the bath confines the focused rays from the lamp for optimum efficiency. Stirring is by means of a 1600 r.p.m. motor, power consumption 28 watts, and a four-bladed Monel metal paddle, 2 inches diameter, mounted on the nonmetallic top plate which fits on the rim of the bath without clamping. Maximum power consumption 385 watts. The outfit includes a Pyrex brand glass jar, 12 inches high x 12 inches diameter.

The thermoregulator is a sensitive mercury-in-glass type, the setting of which is comparable to that of a Beckman thermometer.

The temperature range can be extended by the use of immersion heaters of higher wattage in place of that regularly supplied, or can be lowered below that of ambient air by addition of 9927-C Cooling Tube and external coolant, such as tap water, but the operating sensitivity is reduced somewhat at higher temperatures. The cooling tube fits into the top plate in place of the heater but is not regularly supplied with the bath.

9926-D. Constant Temperature Bath, Infrared, Research Model, as above described, complete with Thermometer 0 to 50°C in 0.1°, 100-watt immersion heater, 6 ft. cord and plug, and directions for use. For 115 volts, 60 cycles, a.c. 206.50
9927-C. Cooling Tube, only, for use in 9926-D, complete with setscrew for attachment to top plate 7.70

ARTHUR H. THOMAS COMPANY
LABORATORY APPARATUS AND REAGENTS
WEST WASHINGTON SQUARE
PHILADELPHIA 5, PA.

Teletype Service: Western Union WUX and Bell System PH-72
CLEVELAND MEETING ON PROFESSIONAL PROBLEMS
(Continued from page 1)
been made very suddenly. However, late in the meeting, someone made the constructive suggestion that no cooperation of a well-established group could be expected until a more definite program, having in it elements of common interest, could be worked out.

Earlier during the discussion, I was asked about views of the AACC on the relationship of non-medical and medical groups. I mentioned the following:

1. That the code of ethics, which the AACC has worked out, would, in my opinion be a very important pronouncement defining the relationship of the clinical chemist to the doctor. Copies of this might be made available to Dr. Borg for distribution, since I feel that collaboration will be simplified as soon as the various groups define their relationship to Medicine and their other objectives themselves.

2. That the diversity of background in non-medical groups seemed to me to be an important matter. Organizations requiring an M.D. as a prerequisite, begin with members whose premedical training has been partly specified, and whose four years toward the M.D. have been pretty well standardized. This makes for homogeneity and common interest, and simplifies the matter of certification. As you know, I also feel that the heterogeneous background of men in other fields such as clinical chemistry is in some respects most desirable, for it supplies the medical profession with services that could not be provided by persons who have had similar training.

3. In my opinion the principal basis for friction is a difference of opinion for the fundamental question: "Is the practice of my specialty the practice of Medicine?" When I tossed this into the hopper, the discussion at once began to get lively. I pointed out that the AACC is officially on record in this connection and that, in this respect, my statement could be regarded as more than a personal opinion. Nobody in a medical school cares whether the professor of biochemistry claims that physiology is a more extension, or vice versa, but passing laws on the subject would be another matter. And, it is, of course, common knowledge that the legal battles usually revolve about the question: "Is this man practicing Medicine without a license?" If so, he is breaking the law in every state. Some of the discussants felt that they are in a sense practicing Medicine because they not only tell the doctor that the outcome of a given test is thus and so, but interpret its significance further when he calls back to inquire about this. The important thing here, it seems to me, is "when he calls back." That makes the man who is called a consultant, and the doctor assumes the responsibility for the case. So long as the laboratory man does not advise the patient directly, but supplies the doctor with opinions as well as findings on the basis of which he can arrive at a diagnosis and prescribe treatment, he is not, in my opinion, practicing Medicine. I feel that here is a principle where unanimity of opinion might well be achieved.

In the course of discussion, I also mentioned that in my opinion a doctoral degree (M.D., Ph.D., or D.Sc.), including special courses required in the particular area, plus three years of experience, might become a common goal in certification. This would naturally not be achievable at once, particularly in non-medical groups. In fact, it seemed a bit staggering to some of those present, who felt that the problem is being approached from the wrong end. In other words, one certifies those who do not require certification. I have had many doubts about certification myself, but now hope it will provide many with an objective analogous to that of wanting to fulfill requirements for membership in the American Society of Biological Chemists or other organizations that set down certain standards.

After consideration of Dr. Gaebler's report, the National Executive Committee voted that the AACC favors the principle of an association of organizations of laboratory disciplines that supply services to medicine, provided that the Code of Ethics of the AACC remain a minimum standard. Dr. Gaebler was appointed as representative of the AACC to the permanent organization. The AACC will also meet reasonable expenses.

REPORT ON SECOND SURVEY OF INTER-LABORATORY ACCURACY
Conducted by Southern California Section
April 1952

Alliquots of pooled serum, sterilized by passing through a Sato filter, were mailed out by first class mail in sterilized screw-cap vials to member laboratories in the Los Angeles area with instructions to perform the following determinations: total protein, chloride, sodium, potassium, total bilirubin, icterus index, and thyroid turbidity. Each test was to be performed in duplicate and the results were to be returned anonymously with a notation of the method used, the date of the performance of the test, and the date of receipt of the specimen. In addition, it was requested that duplicate analyses for sodium and potassium be performed on three successive days to get an idea of the between day error of these analyses.

Eight to twelve laboratories reported on each determination and the results were analyzed statistically. The arithmetic means of the reported results with limits, expressed as percentages of means, which would include all of the reported results, are as follows: total protein 6.5 gms% ± 12%, chloride 99.0 meq/liter ± 10%, sodium 142.5 meq/liter ± 4.6%, potassium 4.85 meq/liter ± 23% (if one laboratory is excluded, these limits become ± 14%), total bilirubin 1.36 mgs% ± 29%, icterus index 16 units ± 37%, thyroid turbidity 3.9 units ± 154% and ±75%. Total protein was determined in two independent laboratories by Kielldahl, reporting 6.6 and 6.8 gms%. The average of these latter reports was used for the calculation of the limits given above for reported protein values. Comparison of the various methods used with the results obtained reveals no consistent correlation. Comparison of results with the time elapsed between mailing and running the tests also fails to reveal any significant trend.
MINUTES OF EXECUTIVE COMMITTEE
November 20, 1952

The minutes of the previous meeting at Atlantic City, published in the September, 1952 issue of THE CLINICAL CHEMIST, were approved without correction.

Miriam Reiner reported for the Editorial Committee and noted that the first volume of the Book of Methods is now in preparation by the Academic Press. Twenty methods are to be included, and these were tested by twenty-seven individuals. A vote of thanks was given to the Committee on the compilation of this important task, and Nelson F. Young of Richmond, Virginia was invited to form an Editorial Committee for the second volume of the Book of Methods. Kurt M. Dubowski (chairman), Irving Sunshine and Harold D. Appleton were requested to report on a proposed manual of toxicological methods.

Harold D. Appleton reported for the Editorial Board of THE CLINICAL CHEMIST and noted that the first year has found THE CLINICAL CHEMIST gaining in stature as the spokesman for the profession. The newsletter is now circulated in ninety countries and various library groups have requested complete files. Plans for 1953 include scientific features of which three series have already been accepted for publication and it is hoped that THE CLINICAL CHEMIST will serve both as a news organ and as a journal. It was moved, seconded and approved that henceforth the newsletter be known as "The Official Publication of the American Association of Clinical Chemists." It was also recommended that a Business Manager be selected to supervise the financing of the publication while the present Editorial Board would be concerned only with editorial policy. Ellermon Viergriever was invited to fill the three-year vacancy on the Editorial Board.

Hugh J. McDonald completed the report for the present Committee on Education and noted "a tendency of the practical professional aspects of clinical chemistry to over-shadow and essentially obliterate the strictly scientific aspects." It was suggested that "such an impression of the profession can hardly compete with the attractive research opportunities now offered by so many industrial and governmental laboratories." It was also suggested that the opportunities in clinical chemistry have not been suitably publicized. A vote of thanks was given the Committee on Education on the completion of its task, and Emmet B. Carmichael of Birmingham, Alabama was invited to form a new Committee.

Oliver H. Goeblen represented the AACC at a meeting held on October 20, 1952 in Cleveland, Ohio. Members of several organizations interested in the medical-biological-chemical field discussed the nature of their common problems and the desirability of united action in seeking solutions to these problems. To that end the AACC was invited to join in the formation of a permanent committee. It was moved, seconded and approved that the AACC favors the principle of an association of organizations of laboratory disciplines that supply services to medicine, provided that the Code of Ethics of the AACC remain a minimum standard. Dr. Goeblen was appointed as representative of the Association, and the AACC would meet reasonable expenses.

The Southern California section requested an opinion as to the advisability of student affiliate memberships to a section, such affiliates to be assessed only the nominal costs of publications. The by-laws require that members of any section must also be members of the Association. Article III of the constitution defines membership levels, and an amendment to the constitution would be necessary for student affiliate membership as provided in Article XIV. It was also noted that at the present time such students would be eligible as associate members.

An International Association of Clinical Biochemists was discussed at great length. Warren M. Sperry, the American member of the Commission on Clinical Chemistry of the International Union of Pure and Applied Chemistry, was present at the meeting and provided in detail the proceedings of the Paris meeting on July 24, 1952 during the Second International Congress of Biochemistry. It was proposed in Paris that an International Association of Clinical Biochemists should be formed under the auspices, or closely associated with, the International Congress of Biochemistry. The Commission on Clinical Chemistry of the IUPAC would act as the nucleus for a Committee of the International Association of Clinical Biochemists. The AACC passed the following resolutions:

1. The AACC approves in principle the participation in the proposed International Association of Clinical Biochemists.
2. The AACC will appoint a representative to the Committee on the invitation of the Commission on Clinical Chemistry of the IUPAC.
3. It is the sense of the AACC that this International association ultimately be a federation of national societies rather than an association of individual members, with due regard to safeguarding the participation of clinical chemists in those countries that have no national societies.
4. The name be changed to the "International Association of Clinical Chemistry" rather than the "International Association of Clinical Biochemists."
5. The above resolutions be forwarded to the Commission on Clinical Chemistry.

The Program Committee was instructed to prepare a symposium for the 1953 AAAS meeting and also a session on clinical chemistry at the same meeting.

The meeting was adjourned at 12:45 A.M.
Respectfully submitted,

Max M. Friedman, National Secretary

(Continued on page 6)
BOOK REVIEWS

Those of us who have heard Dr. Natelson report on his work with premature infants, and those who have seen the exhibit of this subject by this group from Rockford Memorial Hospital, Rockford, Ill., at the convention of the AMA in Chicago this past June, wondered if there would ever be a compilation of the "ultramicro" methodology, so that the same service could be available in other institutions.

This book compiles the clinical and laboratory data to support the theory that "adrenal immaturity" is the common finding in the premature infant, and presents the method of treatment for these patients according to the "Rockford Plan". It is for this reason that the data would be of extreme interest both to clinical chemists and pediatricians. The clinical chemist is a full partner in this plan. The results of the described methodology determines the treatment. The second half of this book gives the normal values for infants and the levels that abnormalities will reach together with methods of calculating fluid to correct deficiencies.

"Ultramicro" chemical procedures are well described. These include drawing the blood samples, method for hemocrit, blood iron, sodium and potassium, protein, chloride, sugar, urea nitrogen, CO2 content, non protein nitrogen, blood pH, oxygen content, serology and blood culture. Though the equipment used would not be found in every laboratory, certain of these tests could be performed with ordinary equipment. The special equipment described is now stocked by equipment dealers.

Looking ahead towards the extension of clinical chemical research, these methods offer means of working with small animals, in tissue slice studies, enzymes studies, as well as for certain cases where adequate blood samples are not available.

The book is in a soft metal ring binder, printed on good paper, and should be part of every laboratory library. It would be worth the price if there was a charge for it. As it is sent free to interested scientists, the authors and publishers should be congratulated for their work and generousity. Copies are available from the Medical Director, Endo Products Inc., 84-40 101 Street, Richmond Hill 18, New York.

The proceedings of a symposium held at Oberlin College, June, 1950 sponsored by the Sub-Committee on Radiobiology of the Committee on Nuclear Science, of the National Research Council, have now been presented to all that are interested. For this symposium, the committee attempted to bring together the experimental radiobiologists, chemists, physicists and biologists for an open discussion of the present knowledge of the biological effects of ionizing radiations.

The editor has done a good piece of work in organizing the 23 presentations. He introduces the subject to the reader with essays on the fundamental theories of the primary interaction of ionizing radiations with matter. Following this introduction, papers on theoretical radiation chemistry, effects on water and then a series of presentations of radiation effects on cells are presented. The symposium is concluded with a consideration of the effects of radiation on mammals. Each paper is followed by a discussion which emphasizes the highlights of the presentation.

It is here, that one recognizes the names of distinguished researchers not included in the essays.

The book will provide a good introduction to the subject matter for people interested in this field and for those newcomers that want an overall picture together with a survey of the literature to June 1950. The absence of a subject index will make this book lose effect as a reference source.

NEW BOOKS

CONDENSED REVIEW OF PHARMACY

COMMITTEE ON EDUCATION

(Continued from page 5)

search is included under the term "clinical chemist". The tendency of the practical professional aspects of clinical chemistry to over-shadow and essentially obliterate the strictly scientific aspects, is apparently still prevalent.

Most graduate students in medical biochemistry whom I have interviewed, have revealed an opinion that the clinical chemist is still simply "technician", who does a daily chore of analyses in a hospital for a living, and who is not much interested in the scholarly pursuit of knowledge. Such an impression of the profession can hardly compete with the attractive research opportunities now offered by so many industrial and governmental laboratories.

When "Chemical & Engineering News" ran a series of articles on "Careers in Chemistry", about a year ago, they did not to my knowledge include a section on "clinical chemists", as such. I should like to suggest that Doctor Murphy, the editor, be informed of this omission, and that approval be sought for an article for C. & E.N. about clinical chemistry. Such an article, it seems to me, ought to be prepared, as a joint effort, by a special AACC committee appointed for the purpose. Every effort should be made to bring out all the fascinating areas of professional and scientific endeavor that are included under the broad designation of "clinical chemistry". It should also try and dispel many of the wrong notions, still floating around, about the type of work that lies in store for the young biochemically trained Ph.D. who is trying to reach a decision as to whether he should enter the field of clinical chemistry.

NEW MEMBERS ELECTED BY THE EXECUTIVE COMMITTEE September - 1952

John R. Washington Montgomery, Ala.
Miles E. Drake Vineyard, N.J.
Sidney Becker Waterbury, Conn.
Eaton M. MacKay Oakland, Cali.
Adrian Huntline, Jr. Cleveland, Ohio
Donald G. Remp Dearborn, Mich.
Mary Ruth Dietrich Kansas City, Mo.
Rufus A. Nichols Brooklyn, N.Y.
The meeting was convened at 4.50 p.m., with Professor E.J. King (U.K.) in the Chair.

The Chairman opened the meeting by explaining that clinical biochemistry was served at present by a number of individual national societies and instanced particularly the National Society of Holland, who were holding their 5th Anniversary this summer. They had proposed to call an International meeting to celebrate this event in Amsterdam, but since they would almost coincide in time with the International Congress in Paris they had kindly agreed to postpone until now the discussion of the formation of an international association of clinical biochemists. He explained that the Biochemical Congresses were organized by a committee which is in association with the International Union of Pure and Applied Chemistry. The latter have set up a small commission of clinical chemists, whose members are:

Professor E.J. King (U.K.)
Professor W.M. Sperry (U.S.A.)
Professor P. Fleury (France)

This commission has collected ideas from biochemists in a number of countries. It is suggested that an association of clinical biochemists should be formed and should be closely associated with the International Congress. The chairman had drawn up a memorandum containing ten clauses which he then read to the meeting, and proposed that discussion of each of the clauses should be taken separately.

CLAUSE I.

"An international association of clinical biochemists shall now be formed whose function shall be to advance knowledge and promote the interest of biochemistry in its clinical (medical) aspects."

DISCUSSION.

The Chairman felt that this association should remain on a fairly informal footing and one of its main functions should be to provide a forum for the discussion of ideas on international cooperation.

Professor J. A. J. F. J. Gaumann (Belgium) said that the word "clinical" implied the functions of a medical practitioner. Clinical biochemistry was an integral part of clinical pathology and an international society of clinical biology was already in existence. Its members were entirely medical practitioners, and he, therefore, felt that the formation of the proposed association was mistaken.

Professor W. M. Sperry (U.S.A.) said that his statement was entirely contrary to the functions of modern medicine, since nowadays efficient medical treatment requires the cooperation of teams which include non-medically qualified chemists.

Professor W. M. Sperry (U.S.A.) felt that this discussion was one of semantics only. He thought that the word "clinical" did not necessarily denote a medical qualification, although he admitted that, in similar discussions taking place in the United States, great efforts had been made to identify "clinical" with a medical qualification.

Professor E.J. King (U.K.) said that he had had discussions of this type in several countries which had all finally adopted the word "clinical".

Professor P. Fleury (France) pointed out that France had a similar society, to which doctors, pharmacists, veterinarians and chemists were admitted on equal footing. He felt that Dr. Jannin was not representative of French-Belgian opinion.

Professor A. E. Söbel (U.S.A.) agreed that the word "clinical" did not necessarily denote a medical qualification, and said there existed a symbiotic relation between the doctor and the chemist. In fact, he said in many hospitals chemists are now members of the hospital boards.

Professor J. J. M. Verschuer (Holland) said that the province of the clinical biochemist was limited to analytical work on specimens and did not extend to treatment of the patient, which is the proper function of qualified medical practitioners. He said that the clinical biochemist "treated urine, not the patient".

Dr. B. Josephson (Sweden) felt that if clinical biochemists wished to be treated as specialists then the formation of an international body was necessary. He thought that the only qualification for membership was an interest in the subject.

Dr. J. A. J. F. J. Gaumann (Belgium) reiterated that the word "clinical" implied the examination of patients. Professor W. M. Sperry (U.S.A.) then suggested that Dr. Jannin should propose some other suitable word.

Dr. J. A. J. F. J. Gaumann (Belgium) replied that it was not his job to find another word to replace "clinical", which was, in his opinion, quite unsuitable.

Dr. J. Harkness (U.K.) reminded the meeting that the Association of Clinical Pathologists of Great Britain were recently asked to admit non-medically qualified biochemists to their membership, but found themselves unable to do so.

Dr. R. Askeland (Norway) said that membership in this association should be dependent on competence and not possession of any particular diploma. He wondered whether the word "medical" instead of "clinical" would meet the case.

Dr. A. L. Later (U.K.) said that in his opinion opposition to the word "clinical" came mainly from older medical practitioners and was motivated by personal reasons.

Dr. B. Josephson proposed that the meeting should proceed with the other business and leave the question of the name of the association until last.

Professor R. Vivario (Belgium) remarked that without the word "clinical" the title failed to convey the special sense which was required.

Professor R. Vivario (Belgium) commented on "clinical applied biochemistry".

Dr. J. A. J. F. J. Gaumann (Belgium) suggested "biochemistry in its application to medicine". However, Professor R. Vivario (Belgium) proposed that a vote should be taken on the clause in its initial text.

Dr. G. Thomas (U.K.) seconded this proposal which, accordingly went to the vote.

In favour, 25; against, nil; abstentions, 1.

CLAUSE II.

"The commission on clinical chemistry of the Section of Biological Chemistry of the International Union of Pure and Applied Chemistry shall act as the Committee of International Association of Clinical Biochemists."

DISCUSSION.

The Chairman pointed out that the International Union of Pure and Applied Chemistry had already appointed this Commission on Clinical Chemistry. He suggested that it would be convenient for this Commission to act on the nucleus of the Committee of the International Association, with powers to appoint to themselves further members. He asked the meeting to discuss this matter and to decide whether this was their wish.

Dr. M. Reinzer (U.S.A.) thought that this was a very good arrangement.

Professor R. Vivario (Belgium) asked whether the Association was intended to be a federation of national societies.

The Chairman replied that on the contrary it was in itself an international society.

Professor R. Vivario (Belgium) wished to know whether members of this Association must necessarily be already members of national societies.

The Chairman said no.

The modified clause was put to the meeting.

In favour, 25; against, nil.
CLAUSE III.
"The Committee shall set up special committees to deal with specific matters of special nature (e.g., with internationally agreed ways of expressing results) as may seem indicated from time to time."

This was adopted unanimously.

CLAUSE IV.
"The Committee shall make attempts to ascertain the titles of existing societies of clinical biochemistry (or societies serving the same function under different names) and of their officers; and it shall endeavour to promote the foundation of societies in countries where they do not already exist."

This was adopted unanimously.

CLAUSE V.
"From the lists of names of members in existing societies and from the names of other such persons who may be ascertainable to be practicing clinical biochemistry, the Committee shall prepare an international list of clinical biochemists with their addresses, and, where ascertainable, their principle scientific interests."

Adopted unanimously.

CLAUSE VI.
"The International Association of Clinical Biochemists will meet during, and before or after if deemed advisable, the International Congress of Biochemistry, and its members will use the clinical chemistry section of the Congress as a forum in which to present their communications."

Dr. A. E. Sobel (U.S.A.) wondered whether this covered the following clauses.

The Chairman said that this was covered by previous clauses.

The clause was adopted unanimously.

CLAUSE VII.
"The Committee shall represent the local organizing committee of the Congress that symposia on subjects of special interest to clinical biochemists be held during the Congress and possibly during the day (or two) preceding the Congress."

Adopted unanimously.

CLAUSE VIII.
"The Committee shall encourage and attempt to promote meetings on an international regional basis."

Adopted unanimously.

CLAUSE IX.
"The Committee shall receive and circulate information regarding special new techniques and other matters of interest which might not be readily available through the ordinary vehicles of publication."

Adopted unanimously.

CLAUSE X.
"The Committee or any Sub-committee shall arrange for the circulation of solutions and samples for the comparison of methods and results; and shall attempt to standardize the results of such methods as are usually reported in units or in some other arbitrary way."

Adopted unanimously.

OTHER BUSINESS.
Dr. A. E. Sobel (U.S.A.) proposed a vote of thanks to the Committee for the work it had done. This was carried unanimously.

Dr. B. Josephson (Sweden) suggested that in future congresses emphasis should be placed on topics of general interest to clinical chemists, e.g., lectures by leading biochemists and symposia on subjects of interest to clinical biochemists.

The Chairman proposed that Dr. I. D. P. Woolton (U.K.) should act as Secretary to the Committee. Carried unanimously.

The meeting closed at 6.15 p.m.

APPENDIX A.
Resolutions concerning the formation of the International Association of Clinical Biochemists, which were read to the initial meeting in Paris on 24th July, 1952:

I. The International Association of Clinical Biochemists shall be formed whose function shall be to advance knowledge and promote the interest of biochemistry in its clinical (medical) aspect.

II. The commission on clinical chemistry of the Section of Biological Chemistry of the International Union of Pure and Applied Chemistry shall act initially as the Committee of the International Association of Clinical Biochemists. The Committee shall subsequently include representatives from national societies.

III. The Committee shall set up special committees to deal with specific matters of special nature (e.g., with internationally agreed ways of expressing results) as may seem indicated from time to time.

IV. The Committee shall make attempts to ascertain the titles of existing societies of clinical biochemistry (or societies serving the same function under different names) and of their officers; and it shall endeavour to promote the foundation of societies in countries where they do not already exist.

V. From the lists of names of members in existing societies and from the names of other such persons who may be ascertainable to be practicing clinical biochemistry, the Committee shall prepare an international list of clinical biochemists with their addresses, and, wherever ascertainable, their principle scientific interests.

VI. The International Association of Clinical Biochemists will meet during, and before or after if deemed advisable, the International Congress of Biochemistry, and its members will use the clinical chemistry section of the Congress as a forum in which to present their communications.

VII. The Committee shall represent the local organizing committee of the Congress that symposia on subjects of special interest to clinical biochemists be held during the Congress and possibly during the day (or two) preceding the Congress.

VIII. The Committee shall encourage and attempt to promote meetings on an international regional basis.

IX. The Committee shall receive and circulate information regarding special new techniques and other matters of interest which might not be readily available through the ordinary vehicles of publication.

X. The Committee or a Sub-committee shall arrange for the circulation of solutions and samples for the comparison of methods and results; and shall attempt to standardize the results of such methods as are usually reported in units or in some other arbitrary way.

PHILADELPHIA SECTION MEETING
January 27

Dr. Harry Shay, Director of the Fels Research Institute of the School of Medicine of Temple University, will present a lecture on "Liver Function" at the January 27, 1953 meeting of the Philadelphia Section. Dr. Shay was a member of the founders group of the American Board of Gastro-enterology, and one of his main fields of specialization has been gastro-intestinal physiology.

An informal dinner in honor of the speaker will be held at the Lido Restaurant, 3331 Woodland Avenue, Philadelphia, Pa. at 6:00 P.M. preceding the meeting. Reservations for the dinner may be made up to 11:00 A.M. on January 24 by writing or calling the secretary, Albert B. Sample, at the Bryn Mawr Hospital (Telephone: BRyn Mawr 5-1800).

CHICAGO SECTION

The Chicago Section of the AACC met Friday evening, December 5th at the Stritch School of Medicine of Loyola University. The speaker for the evening was Dr. Hans Popper, Director of Pathology of Cook County Hospital and Director of Medical Research, Hektoen Institute for Medical Research. Dr. Popper spoke on "Conditioned Amino Acid Deficiency" preceding the Congress.

PATRONIZE OUR ADVERTISERS!
The New York Section held its first meeting of the 1952 Fall semester at the New York Academy of Science, Tuesday evening, October 28, at which officers of the section and members of the Executive Committee were elected.

Kurt G. Stern, Professor of Biochemistry at the Polytechnic Institute of Brooklyn, assumed the post of chairman, from that of vice-chairman, according to the section by-laws. The past Chairman, Israel S. Klein, Professor of Biochemistry at New York Medical College, became a member of the Executive Committee. Bernard Klein, Kingsbridge Veterans Hospital, was elected Vice-Chairman. Abraham Seiler, Jewish Hospital for Chronic Diseases, became Secretary-Treasurer.

Elliot Beach, of the Metropolitan Life Insurance Company, was reelected to the Executive Committee. Other members elected to the Committee are: Jacob Klinger, Metropolitan Hospital; Alexander Greenstein, Bellevue Hospital; and L.J. Greenblatt, Beth-Eli Hospital. The latter two received a tie vote and the membership decided to allow both to serve instead of having a runoff vote.

Doctor Albert E. Sobel, National President, reported to the Section on the formation of an International Organization of Clinical Chemists. The plans for this organization were formulated at the 2nd International Congress of Biochemistry in Paris in July, 1952. The Chairman of the International Organization is Doctor E. J. King, of Great Britain. Doctor King is also an Honorary Member of the American Association of Clinical Chemists.

Doctor Stern presented an interesting resume on types of instrumentation that are being used in European laboratories at the present time, and which could be used to great advantage in American laboratories. Among the instruments discussed were European-type spectrophotometers, paper electrophoresis equipment, and an ingenious electron microscope which can be built very cheaply and which Doctor Stern brought to this country in a small suitcase. The AACC is proud to report that Doctor Stern was awarded the Pasteur Medal at the 2nd International Congress of Biochemistry.

The new season of monthly scientific meetings opened September 9 at the Los Angeles County Hospital. The results of the second interlaboratory accuracy survey were presented to the membership and guests by Miss Maxine Wertman, committee member, followed by a discussion of the "Statistics of Interlaboratory Accuracy Surveys" by Dr. R. J. Henry, committee chairman. An abstract of the survey results, prepared by Dr. Henry, will be found elsewhere in this issue.

Pietro de Nicola, M.D., Associate Professor, Department of Internal Medicine, University of Pavia, Italy was guest speaker on October 7 at the Hollywood Presbyterian Hospital. Dr. de Nicola discussed his work on the "Clinical Evaluation of Hyperglobulinemias".

Kenneth D. Johnson, Chaney Chemical Laboratory, spoke on November 5 at the Cedars of Lebanon Hospital, dealing with various phases of "Spectrophotometry in the Clinical Chemical Laboratory."

Arthur W. Adamson, Ph.D., Professor of Chemistry, University of Southern California, who addressed the group last April 1, has provided the following abstract. As a pioneer wartime worker in a field that has since shown remarkable development, benefiting clinical and other chemists alike, Dr. Adamson is especially qualified to appraise the subject of "Ion Exchange."

"Ion exchange separations are most efficiently carried out by means of the column or chromatographic procedure, whereby bands of "adsorbed" ions are moved down the column by appropriate eluants. Complete separation of similar ions is possible by this technique. Thus if species A and B have distribution coefficients differing by only 1%, initially superimposed bands of A and B will be completely separated, in theory, when the eluting solution has moved them down the column a distance approximately one hundred times their width. In practice, such bands tend to become diffuse, and several theoretical treatments have been developed to describe the situation."
PHILADELPHIA SECTION
The first meeting of the 1952-53 season of the Philadelphia Section, American Association of Clinical Chemists, was held at 7:45 P.M. on Tuesday, October 28, 1952 in Alumni Hall of the Hospital of the University of Pennsylvania. Prior to the meeting, there was an informal dinner in honor of the speaker at the Lido Restaurant.

The president, Dr. Cecilia Riegel, introduced Mr. James J. Moran of the Customer Research Department of the Kimble Glass Company, Vineland, N.J., who spoke on "Volumetric Glassware.

Illustrating his lecture with numerous lantern slides, Mr. Moran considered the many details involved in the manufacture of precision volumetric laboratory glassware, with emphasis on calibration techniques and the tolerances that might be expected in the routine use of such equipment. Precautions that should be taken in preserving the accuracy of calibrated glassware were also discussed.

Following his lecture, Mr. Moran showed a most interesting sound moving picture in color that took the audience on a trip through all departments of the Kimble Glass Company and showed the elaborate machines and processes that are used in assuring the uniformity and accuracy of the various pieces of volumetric glassware.

After the motion picture, Mr. Moran answered questions related to the subject of his lecture.

Members of the Association remained for a short business meeting after the scientific program, and Dr. Riegel discussed the processing of applications for certification by the American Board of Clinical Chemistry as described to her by Dr. Joseph W. E. Harrison, Secretary-Treasurer of the Board.

PROTEIN STANDARD SOLUTION
Protein Standard Solution—Armour, 10 mg. of protein nitrogen per ml., is a sterile, stable solution of crystallized Bovine Albumin with a pH of approximately 8.8. It is carefully standardized by its protein nitrogen content, and is a certified, thoroughly valid secondary standard for use in the determination of protein by the Biuret Colorimetric Method or any other reliable standard method.

For further information, please write to The Armour Laboratories, 520 North Michigan Avenue, Chicago 11, Illinois.

BOSTON SECTION
On October 16, 1952, at 8:00 P.M., the Boston Section A.A.C.C. held its first meeting of the 1952-53 season at the New England Medical Center. Preceding the speaker of the evening, the annual election of officers took place. The following were appointed:

Norbert Benotti, Chairman
Arthur Detore, Vice Chairman
Esther Thomas, Secretary-Treasurer
Dr. I. S. Rosenberg of the Endocrine Research Laboratory of the New England Medical Center spoke on the subject of "Serum Proteins and Lipids by Paper Electrophoresis."

Since its inception, paper chromatography could accomplish separation of larger molecules as proteins only with great difficulty. A great advance in the latter direction came about in 1950 when Tiselius and Durrum observed that protein-separation was possible if buffered paper was placed in an electric field. The method, the speaker felt, has advantages over conventional chemical ones, inasmuch as it possesses greater sensitivity, and requires relatively little apparatus. In European hospitals it apparently is quite widely used.

Dr. Rosenberg explained that his interest in paper electrophoresis was stimulated by studies of the serum lipids, feeling that in view of the association lipids have with proteins, the lipids would probably migrate in an electric field as well.

In the technique, a strip of moderately heavy paper is used, each end being immersed in a vessel containing a veronal buffer of pH 8.6. Between the two cells, a potential of 1000 v. D.C. is applied. The serum to be studied is applied to one end of the strip, and following the run, color development is carried out in much the same manner as conventional paper chromatography. In Dr. Rosenberg's studies, the proteins were stained by the method of Durrum and the lipids with Sudan IV. The Schultz test, which is a modified Liebermann-Burchard reaction, was used to detect cholesterol. The latter could also be eluted from the paper and determined chemically. He stated that no really satisfactory method exists for demonstrating phospholipids, the histological method of Smith-Diastase being inadequate. Labeled phospholipid phosphorus offers possibilities in this direction, however. The speaker described some of his observations with paper electrophoresis which included many studies of pathological sera. Albumin, which normally migrates fastest, was found to be lacking in nephritic syndromes, for instance. In normal serum the speed of migration, in descending order, appears to be: albumin, alpha globulin, beta globulin, and gamma globulin; cholesterol appears in the beta globulin region. Quantitation appears to be possible by several techniques. Elution of the bands and subsequent colorimetric measurement, or rendering them transparent and measuring their density with a densitometer, are two he offered.

WANTED
A well-trained clinical chemist for the largest Maternity Hospital, located in Jersey City. Some routine work, supervision of two well-trained technicians and opportunity for research. Good professional relations with clinical staff and independent directorship of the department. Apply to Leon C. Chesley, Ph.D., 88 Clifton Place, Jersey City 4, N.J.

PHARMACOLOGIST, rank: Research and Teaching Assistant up to Associate Professor. Candidates with good training in clinical chemistry, biochemistry, or physiology will be considered. Well-equipped laboratories for research in fluid and electrolyte balance, diuretics, neurogenic and humoral factors in renal function. Growing progressive institution, intellectually stimulating and friendly atmosphere. A limited number of half-time appointments may be available for those desiring to study for degree of Doctor of Osteopathy. Please submit curriculum vitae, list of references, and salary requirements in first letter addressed to: Samuel A. Corson, Ph.D., Head, Department of Pharmacology, Kirksville College of Osteopathy and Surgery, Kirksville, Missouri.
DU Pont's NEW MIRACLE FABRIC

ORLON

For laboratory workers, hospital and medical technicians, chemists and all whose activities cause unusual deterioration of the clothes they wear.

ORLON is not a treated fabric . . . the characteristics of the ORLON acrylic fibres themselves give this cloth its amazing resistance to deterioration by chemicals, dirt, soot, insects, micro-organisms and acids . . . permanently!

PROFESSIONAL JACKET
For Office, Hospital and Laboratory Use

RALEIGH
— No. 11938
Stylish, single-breasted jacket with three detachable buttons. Meticulously made with special attention to smart appearance. Sanforized 8 oz. double-filled super duck.

SIZES 34-48
Each $5.00

STEPHEN — No. 11934
Full length, roomy, tailored like a topper for active wear. Back slit for freedom and easy movement. With detachable buttons and reinforced side vents for access to inner pockets. Full length.

SIZES 34-48
Each $14.75

RICHARD
— No. 11936
A brand new knee-length version of the standard lab coat. Belted back for better fit. Laundry-proof, cloth-knot buttons which are permanently anchored for exceptionally long wear. Sanforized durable white twill.

SIZES 34-48
Each $6.60

STANDARD SCIENTIFIC SUPPLY CORP.
34 West 4th Street
New York 12, N. Y.
HONORARY MEMBERS

Blietherwitz, Norman R., Metropolitan Life Insurance Co., 1 Madison Avenue, New York, N. Y.

Bloor, Walter R., School of Medicine and Dentistry, University of Rochester, Rochester, N. Y.

Noyons, E. C., Byleveldsingel 16, Nijmegen, Netherlands

Shaffer, Philip A., Professor of Biochemistry, Washington University School of Medicine, St. Louis 10, Mo.

Van Slyke, Donald D., Brookhaven National Laboratory, Brookhaven, N. Y.

H. Abernethy, Raymond J. - Coroner's Office 106 Hall of Justice, Los Angeles 12, Calif.

Ackerman, Philip - 6541 Marquette St., St. Louis 9, Mo.

A'Courte, A.E., - Hudson Apt. 1-4 Edgewood Apts., Goldsboro, N.C.

Adams, George A. - Adams Laboratory, 225 South 17th St., Philadelphia 3, Pa.

Alles, Gordon A. - 770 So. Arroyo Parkway, Pasadena 2, Calif.

Alper, Carl - Dept. of Biochemistry, Hahnemann Medical College, 225 No. 15th St., Philadelphia 2, Pa.

Andersch, Marie A. - University Hospital, Baltimore, Md.

Anderson, Dolores E. - 584 Arlington Avenue, Elmhurst, Ill.

Anderson, Pearl R. - 1201 Forest Glenn Rd., Silver Spring, Md.

Anderson, Vivian L. - 23 Taylor Street, Waltham, Mass.

Annecchiariaco, Frank J. - 258 Skillman Street, Brooklyn 5, N.Y.

Appleget, Harold E. - Cranbury, N.J.

Appleton, Harold D. - Goldwater Memorial Hospital, 3rd N.Y.U. Research Service, Welfare Island 17, N.Y.

Armbratiehrt, Bernard H. - 3900 Hamilton St., Hyattsville, Md.

Armstrong, S. Howard - 1753 West Congress Street, Chicago 12, Illinois.

Balikow, Bernard - Percy Jones Hospital Staff, Battle Creek, Mich.

Ballard, Grace - 922 No. 13th St., Milwaukee 3, Wis.

Baril, Oller L. - 91 Eureka St., Worcester 8, Mass.

Barlow, James Edward - 410 Main Street, Hudson, Mass.

Bartlett, Paul D. - Edsel B. Ford Institute for Medical Research, Henry Ford Hospital, Detroit 2, Mich.

Basinski, Daniel M. - Child Research Center of Michigan, 660 Frederick St., Detroit 2, Mich.

Baumann, Emil J. - Montefiore Hospital, Gun Hill Road, Bronx 69, N.Y.

Bavette, Lucien A. - School of Dentistry, University of Southern California, 635 West Exposition Blvd., Los Angeles 7, Calif.

Bazoll, Beatrice E. - 94 Hutchings St., Roxbury 21, Mass.

Beach, Elliot P. - 315 Florence St., Manhasset, N.Y.

Becker, Robert - 6 Regina Road, Dorchester, Mass.

Becker, Sidney - 84 Frank Street, Waterbury, Conn.

Beckord, O.C. - Our Lady of Lourdes Hospital, Camden 3, New Jersey.

Belfer, Samuel - 746 Jefferson Bldg., Pekin, Ill.

Bell, Lowell (Apt. 8), 4411 West Greenfield Ave., Milwaukee 14, Wis.

Beltz, Marvin F. - Lansdale, R.D.2, Valley Forge Road, Pa.

Bennett, Helen Thomas - Box 650, Yuma, Arizona

Bennett, Irma - 21 Corona St., Dorchester 24, Mass.

Benatti, Joseph - 49 Silver Hill Road, Westport, Mass.

Benotti, Norbert - Boston Medical Laboratory 19 Bay State Road, Boston, Mass.

Bergenstol, Delbert M. - Dept. of Medicine, University of Chicago, Chicago 37, Illinois.

Bergren, William R. - 1446 Marado Place, Altadena, Calif.

Berkman, Sam - 436 N. Roxbury Drive, Beverly Hills, Calif.

Bernhard, Adolph - Lenox Hill Hospital, New York City, N. Y.

Binkley, Francis - Basic Science Bldg., Emory Univ. Emory University, Georgia.

Bischoff, Fritz E. - Santa Barbara Cottage Hospital, W. Puebla & Bath Sts., Santa Barbara, Calif.

Blatt, Sylvia - 121 Clarke Place, New York 52, N.Y.

Bitzer, Lawrence D. - 26 Beaumont Place, New York N. J.

Blech, Alfred - 515 So. 4th Ave., Highland Park, N.J.

Bobbin, Joanne - 627 Columbus Ave., Boston, Mass.

Boden, Epperson E. - 349 West 97 St., Chicago 20, Ill.

Boushione, N.R. - 5979 Molson Ave., Montreal, Canada.

Bowman, Russell O. - Baylor University, College of Medicine, Houston 5, Texas.

Branscomb, Mildred B. - 105 Bracewell Ave., Dothan, Ala.
Christensen, Helvot N. - Tufts Medical College,
Boston, Mass.
Current, Hazel - 918 - 17th St., Santa Monica, Calif.

Danielson, Bernice H. - 6956 South Jeffery Avenue
Chicago 49, Illinois
Danielson, Wayne H. - Children's Hospital,
19th Ave. at Downing, Denver 5, Colorado.
De Frates, Joseph - Dept. of Biochemistry,
Hahnemann Medical College, 235 N. 15th St.,
Philadelphia 2, Pa.

Delaney, Kathleen K. - Chemical Laboratory,
Stamford Hospital, Stamford, Conn.

Dexter, Arthur A. - 12 Cleveland Ave., Everett
49, Mass.

Diamond, Bermed I. - Tabor Medical Building,
1351 Tabor Road, Philadelphia 41, Pa.
Dickman, Albert - 1415 W. Erie Ave.,
Diederich, Mary M. (Sister) - Mount Mary College,
Milwaukee 3, Wis.
Dietrich, Mary Ruth - 4247 Jefferson, Kansas City, Mo.
Diets, Albert A. - Toledo Hospital Institute of
Medical Research, 2805 Oats Avenue,
Toleda, Ohio.

DiPietro, Adeline J. - 100 Memorial Drive, Cambridge
Mass.

Dobkin, Gerald B. - 1495 Morris Avenue, New York
57, N.Y.
Dobkin, Jaqueline L. - 1495 Morris Ave.,
Bronx 57, N.Y.

Dorffman, Herbert - 18 Lakeside Pl., Morristown,
N. J.

Dotti, Louis B. - St. Luke's Hospital, 115th &
Amsterdam Ave., New York City 25, N.Y.
Drobbin, Cornelie A. - 304 S. 23rd Street,
Philadelphia 3, Pa.

Drake, Miles E. - Vineland State School, Vineland, N.J.
Dyer, Robert Leonard - 1040 W. Michigan Street,
Indianapolis, Ind.

Dubbs, Clyde A. - 1814 West Boulevard, Los
Angeles 19, Calif.
Dubin, Alvin - 4180 Marine Drive
Chicago, III.

Dubinsky, Eli H. - 5 Fayston Street, Boston 21, Mass.

Dubowski, Kurt M. - The Norwalk Hospital,
Norwalk, Conn.

Duffy, Anne E. - 80 Greenough St., Brookline
46, Mass.

Dunham, William F. - 23A Chelsea Drive,
Savannah, Ga.

Elkan, Bruno, 83-13 Bay Parkway, Brooklyn 14, N.Y.
Ellis, Hellen - 7683 N. Rogers Avenue,
Chicago 26, Ill.

Enoch, Isle More - 828 Green Street,
San Francisco, Calif.
Epstein, Raphael - 2244 - 86th Street,
Brooklyn 14, N.Y.

Ettinger, Richard H. - Walter Reed Army Medical Center
Washington 12, D.C.

Eyles, Ruth - 1371 Avon Ave., S. W., Atlanta, Ga.

Feinberg, Dorothy M. - 106 Revere St., Boston, Mass.

Fenichel, Richard L. - 9360 Genesee Ave.,
Detroit 6, Mich.

Fiersten, Robert K. - 326 Reisch Building, Springfield, Ill.
Lewis, Merle Lovell - 1504 Wayne Avenue, South Pasadena, Calif.
Livy, Lucy - (Apt. 6C), 860 Riverside Dr., New York 32, N.Y.
Lipschitz, Panni A. - 455 Ocean Avenue, Brooklyn 26, N.Y.
Locke, Lottie Benson - 3021 Shrine Place, Los Angeles, Calif.
Lough, Ruth - 6120 Kimball, Chicago 37, Ill.
Lovell, Clarence E. - 4411 Hickman Road, Des Moines, Iowa
Lowenstein, Bertrand E. - 21 E. 40th Street, New York 16, N.Y.
Lox, Walter E. - Good Samaritan Hosp., Phoenix, Ariz.

MacDonald, Harriet A. - 220 Fisher Avenue, Boston 20, Mass.

MacKay, Eaton M. - 260 W. MacArthur at Broadway, Oakland, Calif.
Mather, John R. - 6th Army Medical Laboratory, Ft. Baker, Calif.
Mancino, Peter C. - Clinical Laboratory, 234 Northview Avenue, New Castle, Pa.
Mandel, Emanuel L. - 36 Butler Street N.E., Atlanta, Georgia
Mann, Frank D. - Mayo Clinic, 102-110 Second Avenue S.W., Rochester, Minn.
Mann, Joseph D. - 127-13th Avenue N.W., Rochester, Minn.
Mar, Peter G. - St. Joseph Hosp., Victoria, B.C., Canada.
Maroney, Patricia S. - Chemical Laboratory, St. Luke's Hospital, New York 25, N.Y.
Moore, Roger W. - 2065 Adelbert Rd., Cleveland 6, Ohio.
Morriello, Frank R. - Morriello Medical Laboratory, 327 Whitley Blvd., Santa Monica, Calif.
Maryam, George M. - Medical Associates, 1200 Main Street, Dubuque, Iowa.
Mosalski, Mary A. - 175 Division St., New Rochelle, N.Y.
Mason, Harold L. - Chemical Laboratory, Mayo Clinic, Rochester, Minn.
Mason, Morton F. - Parkland Hospital, Dallas 4, Texas.
Mathews, Annette - Eastern Maine General Hosp., 489 State Street, Bangor, Maine.
Mattone, John J. - 19 Devoe Street, Brooklyn, N.Y.
Mayer, Gerda, C. - 276 Riverside Dr., New York City, New York.
McCarty, Alice - 23 Osborne Rd., Brookline, Mass.
McCarthy, John J. - 1024 Main Street, Racine, Wis.
McClure, Harry B. - Institute of Pathology, Western Pennsylvania Hospital, Pittsburgh, Pa.
McDonald, Hugh J. - Dept. of Biochemistry, Loyola University, School of Medicine, 705 S. Wolcott Ave., Chicago 12, Illinois.
McGhee, Eva C. - 2046 Polifax Dr. N.E., Atlanta, Ga.
McGlaffin, Jane E. - 51 Crestmont Road, Bangor, Maine
McKaslin, Eliza A. - 41 Clark Road, Brookline 46, Mass.
Mckeever, William E. - 4922 Burgoyne Lane, La Canada, Calif.
Mckenna, Mary H. - Harlem Hospital, Lenox Ave. & 136th St., New York City, N.Y.
Mello, Marie Isabel - Instituto Oswaldo Cruz, Rio de Janeiro, D.F., Brazil.
Melville, Robert Seaman - 2109 Evans Road, Flossmoor, Illinois.
Mezey, Cornelius M. - V.A. Hospital, B., Shreveport, La.

Michaelis, Moritz - Department of Psychiatry, University of Maryland Medical School, 29 S. Greene Street, Baltimore 1, Md.

Michaud, Laurent - Veterinary Research Dept., Merck & Co., Rahway, N. J.

Ming, Charles - 67 Charles Way, Trenton 9, N.J.

Ming, Mary F. - 67 Charles Way, Trenton 9, N.J.

Mikkin, Abraham - 226 E. 12 Street, New York 3, N.Y.

Mishkind, Dan Maj. - Box 330, Letterman Army Hospital, San Francisco, Calif.

Mishkind, Dan - c/o Chemistry Department, Jewish Memorial Hospital, Broadway at 196th Street, New York, N.Y.

Mishima, Nobuko - 1282 Hewitt Ave., St. Paul 4, Minn.

Mohr, Julius - 211 E. 19th St., New York 3, N.Y.

Mohr, Nicholas M. - 211 E. 19th St., New York 3, N.Y.

Moreland, Ferrin - Baylor Medical College, Houston 5, Texas.

Morgenstern, Stanley - 142 South 9th Street, Brooklyn 11, N.Y.

Morrison, Jack A. - The Porro Biological Laboratory, Tacoma, Washington.

Mulay, Ambadas S. - National Cancer Institute, National Institute of Health, Bethesda 14, Md.

Murdock, Harold - Senior Pharmacologist, Johnson & Johnson Research Foundation, New Brunswick, N.J.

N

Netzel, Samuel - Dept. of Biochemistry, Rockford Memorial Hosp., Rockford, Ill.

Nicks, Rufus A. - 1454 Dean Street, Brooklyn 13, N.Y.

Nix, Mary - 4931 N.E. Glisan, Portland 13, Oregon.

O

Olson, Norman S. - Research Laboratory, Thayer V.A. Hospital, Nashville 5, Tenn.

Ormsby, Andrew A. - University of Texas Medical Branch, Galveston, Texas.

Oser, Bernard L. - Food Research Laboratories, 48-14 33rd Street, Long Island City, N.Y.

Osgood, Harlow S. - Swedish Hospital, Seattle 4, Wash.

Owen, C.A. - Mayo Clinic, 102-110 Second Avenue, S.W., Rochester, Minn.

Owen, Seward E. - 418 S. 20th Avenue, Maywood, III.

P

Palma, Anthony Vito - V.A. Hospital, Canandaigua, N.Y.

Pandirli, Demetra - 610 West 143 Street, New York 31, N.Y.

Pappages, Evangeline K. - Dept. of Biochemistry, School of Medicine, Emory University, Emory University, Ga.

Parker, Gene Haus - 2nd Lt. USAF (MSC), 3595 Medical Group Nellis Air Force Base, Las Vegas, Nevada.

Pawelek, Jullio V. - 431 East 6th St., Erie, Pa.

Perkins, Ella - 42 Owen Avenue, Lansdowne, Pa.

Perley, Anne M. - 3211 S.W. 10th, Portland, Oregon.

Perry, Margaret C. - Columbia Hospital, Milwaukee 11, Wis.

Peterson, Ralph E. - 551 Southampton Dr., Silver Spring, Md.

Pierce, Harold B. - Dept. of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont.

Pingles, Jack D. - 3470 Cannon Place, New York 63, N.Y.

Ptoskey, Isidoro - Veteran's Administration Hospital, Long Beach, Calif.

Plestinia, Joseph - 307 W. 25th Place, Chicago 16, III.

Pollard, C.B. - 240 Lehigh Hall, University Station, Gainesville Florida.

Pomarene, Elizabeth - 1165 Rollston Rd., Shaker Hts. 20, Ohio.

Portnoy, Seymour - 90 Legion Street, Bklyn 12, N.Y.

Powers, Marshall H. - Chemical Laboratory, Mayo Clinic, Rochester, Minn.

Powers, Mary V. - 21 Grayson Rd., Winchester, Mass.

Powers, Onie H. - 12 University Road, Apt. 3, Brookline 3, Mass.

Preisler, Paul W. - 3709 Juniate Street, St. Louis 16, Mo.

Prushankin, Mitchell E. - 406 Spruce Street, Westbrook Park, Glenolden PO, Penn.

Purcell, May K. - V.A. Hospital, Glens Falls, Pa.

R

Rabin, A. George - 1322 N. Vermont Ave., Los Angeles, Calif.

Reiner, Miriam - Gallinger Municipal Hospital, Massachusets Ave. and 19 Street S.E., Washington, D.C.

Reinhold, John G. - Pepper Laboratory for Clinical Medicine, University of Pennsylvania, Philadelphia, Pa.

Reinstein, Harold - Boston Medical Laboratory, 19 Bay State Rd., Boston 15, Mass.

Roiter, Raymond - Department of Biochemistry, A & M College, College Station, Texas.

Romer, F. M. - 289 Greenwich Ave., Greenwich, Conn.

Rommie, Norma R. - 53-31 N. Winthrop St., Chicago 40, Ill.

Rump, Donald G. - Henry Ford Hospital, Detroit 2, Mich.

Rosheter, Mary J. - Physicians Clinical Laboratory, 419 Wood Blvd., Benton, Ill.

Reyes, Felix M. - V.A. Hospital, San Patricio, San Juan, Porto Rico.

Rhodes, J. Cecil - Medical Arts Laboratory, Jenkintown, Pa.

Rice, Elizabeth - Pratt Diagnostic Clinic, 30 Bennet Street, Boston 11, Mass.

Richardson, Edwin M. - 902 Maloney Clinic, University of Pennsylvania Hospital, Philadelphia, 4 Pa.

Riedel, Paul A. - 35-15 84th St., Jackson Heights, N.Y.

Rivera, Jose A. Maj. - Tokyo Army Hospital, Chief of Laboratory Service, APO 1092, San Francisco, Calif.

Roberts, Sidney - Department of Physiological Chemistry, School of Medicine, University of California, Los Angeles, Calif.

Rockenmacker, Morris - 1423 Acrast Court, Berkeley, Calif.

Roe, Joseph H. - 1335 H. Street N.W., Washington, D.C.

Rogers, Harry - 811 Caffrey Avenue, For Rockaway, N.Y.

Rose, Edward E. - 15 Vesta Road, Dorchester, Mass.

Roseman, Saul - Dept. of Pediatrics, Bob's Robert Memorial Hospital, 920 E. 59th Street, Chicago 37, Illinois.

Rosenberg, Abraham - 1235 Kearney Ave., Bronx 61, N.Y.

Rosenfeld, Samuel J. - 423 So. 60th Street, Philadelphia 43, Pa.
S
Saeks, Reuben R. - Carson-Saeks, Inc., 11 St. Mary's St., Dayton, Ohio.
Sagin, Jerome F. - 6702 Wells Parkway, University Park, Md.
Saifer, A. - 844 Midwood Street, Brooklyn 3, N.Y.
Sample, Albert B. - 508 Baird Road, Marion, Pa.
Sapin, Stanley - 1416 Sarazen Drive, Alhambra, Calif.
Samuelson, George S. - 64 73rd St., Brooklyn 9, N.Y.
Sandin, Mary D.C. - 1068 2nd Avenue, Des Moines 11, Iowa
Sanush, Daniel - 8309 Cool Spring Lane RFD, Hyattsville, Md.
Schaes, Otto - 3503 Prytania Ave., New Orleans 15, La.
Scherf, Charlotte - 116 East 91st St., New York 28, N.Y.
Schattner, Fred - 126 W. 91st Street, New York City N.Y.
Schefftz, Ralph R. - 8140 East Orange St., Downey, Calif.
Schein, Arnold H. - College of Medicine, University of Vermont, Burlington, Vermont.
Scherf, Frieda - 145 East 22 Street, New York 10, N.Y.
Schonhorn, Harold - 3099 Brighton 6th St., Brooklyn 35, N.Y.
Schulz, Lester J. - Veteran's Administration Hospital, Montrose, N.Y.
Saligson, David - 848 E. Northampton Drive, Silver Spring, Md.
Shaffer, Elmer L. - 208 N. State St., Trenton 5, N.J.
Shapiro, Fanny - 467 Central Park West, New York 25, New York.
Shapiro, Seymour L. - 122 S. Broadway, Yonkers, N.Y.
Sherman, Marion K. - 738 Lynn Falls Parkway, Melrose, Mass.
Sheftar, Marvin R. - Oklahoma Medical Research Foundation, V.A. Hospital, Oklahoma City, Okla.
Shiro, Robert L. - The Children's Village, Dobbs Ferry, N.Y.
Scher, Nellie - 800 S. Brentwood, Clayton 5, Mo.
Siegfried, Dorothy A. - New Britain General Hospital, New Britain, Conn.
Sisk A. - 14 Morton Street, New York 14, N.Y.
Sims, Ethan A. H. - Mary Fletcher Hospital, Burlington, Vermont.
Siplet, Herman - 109 So. 21st St., Philadelphia, Pa.
Skaggs, Leonard T. - Webster Road, R.F.D. No. 1, Berea, Ohio.
Sklar, Melvin S. - 68 Walden Avenue, East Rockaway, N.Y.
Skupp, Solomon - 1359 Ocean Parkway, Bklyn, N.Y.
Smith, Frank A. - School of Medicine and Dentistry, University of Rochester, P.O. Box 287, Station 3, Rochester, N.Y.
Sobel, Albert E. - Jewish Hospital of Brooklyn, 555 Prospect Place, Brooklyn, N.Y.
Sobel, Charles - 107-17 Venice Blvd., Los Angeles 34, Calif.
Sobel, Harry - Cedar of Lebanon Hospital, 4833 Fountain Ave., Los Angeles 27, Calif.
Sobotta, Harry - Mt. Sinai Hospital, 5th Ave. & 100th St., New York 29, N.Y.
Solomon, Nathan A. - 556 Dehller Road, Brooklyn, N.Y.
Somogyi, Michael - Jewish Hospital of St. Louis, 216 So. Kingshighway, St. Louis 10, Mo.
Soskin, Samuel - P.O. Box #14071, Los Angeles 49, Calif.
Sossensky, Antonette - 19 Ossipee Road, West Somerville 44, Mass.
Spray, Warren M. - 722 West 16th St. New York 32, N.Y.
Srivastava, William - 5723 Catherine Street, Philadelphia 43, Pa.
Stering, Ferdinand - 905 Arlington Ave., Greenville, S.C.
Sterng, Kurt G. - Polytechnic Institute of Brooklyn, 85 Livingston Street, Brooklyn 2, N.Y.
Stettner, Max M. - Biochemistry Department, Des Moines Still College of Osteopathy, 722 N. Avenue, Des Moines 9, lowa.
Stevens, Sue C. - 1016 West Dorothy Lane, Dayton 9, Ohio.
Stewart, Gordon S. - Presbyterian Hospital, Chicago 12, Illinois.
Stoler, William M. - 1070 Fail Street, Bronx 59, N.Y.
Stone, Elizabeth K. - Box 2, Hanover, Mass.
Stull, Arthur - 1801-16th St., N.W., Washington, D.C.
Sudduth, Herschel C. - 5306 Wakefield Road, Washington 16, D.C.
Sunderman, F. - Jefferson Medical College of Philadelphia, 1025 Walnut St., Philadelphia 7, Pa.
Sunshine, Irving - Western Reserve University, Institute of Pathology, Cleveland 6, Ohio.

T
Tonnenbaum, Hemina - Veterans Administration Hospital, Lyons, N.J.
Tong, A. - 21 No. Chatsworth Ave., Larchmont, N.Y.
Taylor, Heywood Maurice - Box 3093, Duke Hospital, Durham, N.C.

Thomas, Esther E. - 143 Court Road, Winthrop, Mass.
Thompson, Herbert E. - Division of Biochemistry, The Youngstown Hospital Association, North Side Unit, Youngstown 4, Ohio
Thompson, Mildred - 4 Colgate Road, Great Neck, L.I., N.Y.
Thompson, Vera A. - 850 Lincoln Place, Brooklyn, N.Y.
Thorpe, Donald E. - 931 Vine Street, Paso Robles, Calif.
Thorpe, Samuel L. - 9502 Adams Ave., Cleveland 6, Ohio.
Trippe, Charles - 2163 Main St., Bridgeport 6, Conn.
Tumer, Elvin E. - 821 Roshek Bldg., Dubuque, Iowa.

V
Vanderau, Margaret - 400 Rumson St., Chapel Hill, N.C.
Van Loon, Edward J. - Nichols V.A. Hospital, Louisville 2, Ky.
Vassall, Meldon - 331 Harrison Ave., Boston 18, Mass.
Viergizer, Ellen M. - Ayer Clinical Laboratory, Pennsylvania Hospital, Eighth & Spruce Sts., Philadelphia 7, Pa.
Vollmer, Paul Joseph - 203 Monticello Road, Jefferson Manor, Alexandria, Va.

W
Wabnitz, Charles H. - 514 Oxford Place, Louisville 7, Kentucky.
Wang, Chi Che - 329 So. Maple Ave., Oak Park, III.
Ware, Arnold G. - Los Angeles County Hospital, 1260 N. State St., Los Angeles, Calif.
Washington, John R. - 3810 Medical Group, Maxwell AFB, Montgomery, Ala.
NATIONAL AND LOCAL SECTION OFFICERS

NATIONAL OFFICERS
President – Albert E. Sobel, The Jewish Hospital of Brooklyn, Brooklyn 18, N.Y.
Vice-President – Hugh J. McDonald, Loyola University School of Medicine, Chicago 12, Ill.
Secretary – Max M. Friedman, Chemistry Department, Queens General Hospital, Jamaica 2, N.Y.
Treasurer – Louis B. Dotti, Chemistry Department, St. Luke’s Hospital, New York 25, N.Y.

BOSTON SECTION
Chairman – Norbert Benotti, Boston Medical Laboratory, 19 Bay State Road, Boston, Mass.
Secretary-Treasurer – Esther E. Thomas, 143 Court Road, Winthrop 52, Mass.

CALIFORNIA SECTION
Chairman – Richard J. Henry, 436 N. Roxbury Drive, Beverly Hills, Calif.
Secretary-Treasurer – Kenneth D. Johnson, 4508 Ocean View Blvd., Montrose, Calif.

CHICAGO SECTION
Chairman – Clarence Cohn, Michael Reese Hospital, Chicago 19, Ill.
Secretary – Samuel Natelson, Rockford Memorial Hospital, Rockford, Ill.

NEW YORK SECTION
Chairman – Kurt G. Stern, Polytechnic Institute of Brooklyn, Brooklyn 2, N.Y.
Secretary-Treasurer – Abraham Saifer, 844 Midwood Street, Brooklyn 3, N.Y.

PHILADELPHIA SECTION
Chairman – Cecilia Riegel, Chemistry Dept. Lankenau Hospital, Philadelphia, Pa.
Secretary-Treasurer – Albert B. Sample, The Bryn Mawr Hospital, Bryn Mawr, Pa.

WASHINGTON – BALTIMORE – RICHMOND SECTION
Chairman – Joseph H. Roe, 1335 H Street N.W., Washington, D.C.
Secretary-Treasurer – Pearl R. Anderson, 1205 Forest Glenn Rd., Silver Spring, Md.
STANDARD
LABORATORY APPARATUS

THE NEW AUGUST SAUTER ULTRA-RAPID PRECISION BALANCE

SUITABLE FOR CHECK WEIGHING AND MANY INDUSTRIAL USES.

Six reasons why you get superior performance from the August Sauter Ultra-Rapid Balance:

- Fully enclosed beam
- Direct dial reading of fractional weights
- Dead beat action through damping system
- Simultaneous arrestment to pans, dial and beam
- Four available capacities, 200g to 2000g
- Adjustable leveling nut and built-in level

The new August Sauter Ultra-Rapid Balance provides a means of weight determination which heretofore has been confined to laboratory procedure. It is simple and easy to operate and can be used even on a production floor without any prior knowledge of analytical weighing. It has a high degree of sensitivity that can be relied upon for fast and accurate weighing, and yet it is so constructed that it will withstand rough treatment.

The body of this Balance is of cast aluminum construction and finished in white enamel. The hardwood base rests on adjustable leveling legs, and the weighing pans are made of brass, heavily plated with nickel.

The 200g model only, because of its additional sensitivity, is supplied at all times in an oak case. On the remaining models, a case is not necessary, and is supplied on request, as a special order.

<table>
<thead>
<tr>
<th>CATALOG NO.</th>
<th>CAPACITY</th>
<th>READING</th>
<th>DIVISIONS</th>
<th>SENSITIVITY</th>
<th>NET WEIGHT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18455</td>
<td>200g*</td>
<td>0 to 1g</td>
<td>10 mg</td>
<td>5 mg</td>
<td>28½ lbs</td>
<td>$340.00</td>
</tr>
<tr>
<td>18456</td>
<td>500 g</td>
<td>0 to 2g</td>
<td>20 mg</td>
<td>10 mg</td>
<td>20½ lbs</td>
<td>$285.00</td>
</tr>
<tr>
<td>18457</td>
<td>1000 g</td>
<td>0 to 5g</td>
<td>50 mg</td>
<td>25 mg</td>
<td>20½ lbs</td>
<td>$285.00</td>
</tr>
<tr>
<td>18458</td>
<td>2000 g</td>
<td>0 to 10g</td>
<td>100 mg</td>
<td>50 mg</td>
<td>23 lbs</td>
<td>$285.00</td>
</tr>
</tbody>
</table>

*Supplied only in oak case

STANDARD SCIENTIFIC SUPPLY CORP
34 West Fourth Street
New York 12, N.Y.