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to evaluate ML models, the design 
of clinical validation experiments, or 
on how to create more modular ML 
models that integrate with current 
laboratory medicine information 
technology (IT) infrastructures and 
workflows. 

In all likelihood, the reason for 
clinical laboratories’ slow adoption 
of ML, both from commercial and 
research sources, is multifactorial, 
and arguably emanates from more 
than just the intrinsic limitations of 
the core technology itself. Similar 
to other technologies that receive a 
lot of attention, such as “big data” or 
blockchain, ML remains a tool that 
requires a supportive system archi-
tecture. While the core technology 
is demonstrating promising results, 
its prevalence in daily practice is 
likely to remain limited until devel-
opers and software engineers offer 
clinical IT systems that allow easy 
integration with existing workflows. 

Machine Learning Outside Labs
As electronic health records (EHR) 
continue to evolve and accumulate 
more data, commercial EHR 
vendors are looking to expand their 
data access and analytic capabilities. 
They have begun offering ML 
models designed for use within 
their systems and in some cases 
are allowing access to third-party 
models. Vendors often package 
ML software into clinical decision 
support (CDS), an increasingly 
popular location for blending ML 
and clinical medicine.

While CDS tools traditionally 
rely on rule-based systems, vendors 
now are using ML in predictive 
alarms and syndrome surveillance 
tools, aimed at assisting clinical 
decision makers in complex 
scenarios.

In their current state, ML algo-
rithms usually rely on structured 
data for training and subsequently 
generating predictions. While a 
significant portion of EHRs contains 
unstructured and semistructured 
data, laboratory information remains 
one of the largest sources for struc-
tured data, and it is not uncommon 
for ML-based CDS tools to rely 
heavily on laboratory data as input. 
As CDS tools proliferate, the role of 
laboratory medicine in developing, 

validating, and maintaining these 
models remains important yet 
poorly defined. 

In addition, similar to calculated 
laboratory results such as estimated 
glomerular � ltration rate, probabil-
ity scores generated by ML models 
that rely on laboratory data could 
arguably be subject to regulation by 
traditional governing and accrediting 
organizations such as College of 
American Pathologists, FDA, or the 
Joint Commission.

While the regulation of ML 
remains an openly debated topic in 
the � eld of computer science, the 
growing consensus among experts 
in the medical community is that 
rigorous oversight of these models 
is appropriate to ensure their safety 
and reliability in clinical medicine.

In 2017, FDA released draft guid-
ance on CDS software in an attempt 
to provide clarity on the scope of 
its regulatory oversight (12). While 
these guidelines are still subject 
to change, it’s clear the agency is 

committed to oversight in this area. 
Until guidelines are formalized, 
subjecting ML models to the rigor 
of the peer-reviewed process may be 
the next best thing. 

To deliver promising ML 
technology at the bedside, the IT 
and medical communities may need 
to collaborate with ML researchers 
and vendors to support validation 
studies. Clinical laboratorians may 
be particularly suited for guiding 
these types of efforts, owing not 
only to ML models’ frequent 
reliance on laboratory data but also 
laboratorians’ expertise in validating 
new technology for clinical purposes.

As ML in the post-analytic phase 
propagates, clinical laboratorians will 
need to become increasingly atten-
tive to which laboratory data are 
being used and how. For example, 
changes within laboratory informa-
tion systems may have unintended 
consequences on downstream 
applications that rely on properly 
mapped laboratory result data. 

T1 Common Terms in Machine Learning

Term De� nition

Arti� cial Intelligence (AI)
A broad de� nition which describes the ability of a machine to demonstrate intelligent 
behavior. AI algorithms exhibit either nonadaptive (e.g. rule-based) or adaptive intelligence 
(e.g. machine learning).

Machine Learning (ML) A type of AI that uses mathematical models to automatically map input to desired outputs in 
a way that does not rely on explicit rule-based programming.

Model The algorithm, or mathematical machinery, used to perform an ML task.

Supervised Machine 
Learning

An approach to training ML algorithms in which a model is provided input (e.g. digital im-
ages) that is classi� ed with a label. For example, a model used to distinguish images of cats 
from dogs would be shown many images of cats, labeled as cats, and many images of dogs, 
labeled as dogs—a process denoted as training. Following training, a user could show this 
model an image of a cat or dog without a label, and the model on its own should be able to 
classify the image.

Unsupervised 
Machine Learning

An approach to training ML models in which the input data has not been labeled, and the 
algorithm identi� es patterns or regularities in the data. 

Semisupervised 
Machine Learning

An approach to training ML models when the number of labeled input data are limited, but 
the available input dataset is large. A combination of supervised and unsupervised tech-
niques use both labeled and unlabeled input data, respectively.

Computer Vision
A broad de� nition that describes the ability of a machine to extract useful features from a 
digital image and perform subsequent analysis to confer an understanding of the contents in 
that image.


