<table>
<thead>
<tr>
<th>Method for assessment</th>
<th>Example of skills evaluated</th>
</tr>
</thead>
</table>
| Direct observation | • Optimization of the mass spectrometer
• Assessment of system suitability checks
• Preparation of reagents, calibrators and QCs
• Glassware washing
• Maintenance of instrument and ancillary equipment
• Steps to avoid contamination during sample preparation
• Start-up and shutdown, emergency shutdown of instrumentation
• Contacting technical support
• Performing repeat injections
• Determination of run acceptability
• Peak identification and manual correction of peak integration
• Use of PPE and engineering controls |
| Supervisory review of reports and documentation | • Intermediate test records
• Worksheets
• Trend files (e.g., QC, SST)
• Recording/reporting of blind sample or proficiency testing results
• Troubleshooting records
• Maintenance records |
| Testing of ‘unknown’ samples | • Proficiency testing materials
• Previously analyzed clinical samples
• Blind samples |
| Written evaluation | • Troubleshooting scenarios
• Correction of quality failures
• Performing complex maintenance procedures
• Calculations (e.g., dilution, hydrolysis, ion ratios)
• Identifying problems that need to be escalated to lab leadership for further review
• Backup testing procedures
• Safety practices related to instrument, equipment and sample prep
• Data review of reports from failed runs
• Corrective action for specific instrument error messages (e.g. nitrogen failure, needle malfunction, low/high system pressure, etc.)
• Corrective action for software peak integration problems involving interference, missed peaks or partial injections
• Corrective action for carryover or high background due to contamination |