

PEARLS OF LABORATORY MEDICINE

Candida auris

Seunghyug Kwon, MD, MPH Medical Microbiology Fellow

University of Chicago Medicine, Chicago, Illinois

DOI: 10.15428/CCTC.2020.327858

Candidiasis

- Candida is a genus of yeast
- Candida is part of the normal human microbiota
 - Mouth, throat, gastrointestinal tract, and vagina
 - Usually does not cause infections in immunocompetent individuals
- Candidiasis in the:
 - Mouth or throat \rightarrow Thrush or oropharyngeal candidiasis
 - Vagina \rightarrow Yeast infection
 - Bloodstream and internal organs → Invasive candidiasis (Overlapping syndromes of deep-seated candidiasis and candidemia)

Invasive candidiasis

- Approximately 25,000 cases each year nationwide
- Up to 95% of all Candidemia are caused by 5 species
 - *C. albicans*, *C. glabrata*, *C. parapsilosis*, *C. tropicalis*, and *C. krusei*

Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev* 2007; 20:133-163.

Mortality of Invasive candidiasis

- CDC's surveillance data indicates that in-hospital allcause (crude) mortality among people with invasive candidiasis is approximately 25%
- *C. auris* has been an increasing cause of invasive *Candida* infections globally

Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev* 2007; 20:133-163.

Global Emergence of C. auris

- First reported in 2009 from the ear discharge of a patient in Japan
- First blood stream infection in 2011 from South Korea
- (As of May 2020) Isolated from several body sites in multiple countries on five continents

Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12. Centers for Disease Control and Prevention. *Candida auris*. <u>https://www.cdc.gov/fungal/candida-auris/index.html12.</u> Accessed July 30, 2020.

C. auris Cases in U.S.

- Sudden increase starting in 2015
- Mostly in large metropolitan areas
- (As of May 2020) Total of 1,167 cases in 20 States

Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12. Centers for Disease Control and Prevention. *Candida auris*. <u>https://www.cdc.gov/fungal/candida-auris/index.html12.</u> Accessed July 30, 2020.

Clinical Symptoms

- Similar to other *Candida* species
 - Types of infections include blood, central venous catheter tip, central nervous system, upper and lower respiratory tracts, urogenital system, abdominal, skin, wounds, soft tissue, and bone
- Infects critically ill patients
- Mortality estimated to be 30–60 %

Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, et al. *Candida auris*: A review of the literature. *Clin Microbiol Rev* 2017; 31:e00029-17.

Colonization and Transmission

- Candida species are generally not considered transmissible in healthcare settings
- *C. auris* appears distinct among yeast in that it readily spreads in healthcare settings

Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12.

Colonization and Transmission

- Patients and healthcare workers can be colonized on their skin
 - Particularly the axilla and groin and can persist for many months
- Transmission between patients via healthcare contacts
 - In the U.S., 12% of close healthcare contacts of *C. auris* patients were colonized

Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12.

Colonization and Transmission

- Environmental spread
 - People infected or colonized with *C. auris* shed the organism
 - Persists on various surfaces for at least 7 days
 - Requires thorough decontamination of patient areas

Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12.

Culture and morphology

- Sabouraud dextrose agar Light colored colonies
- Chromogenic agar Candida medium –
 Pink to beige colonies

Diagnostic method (manufacturer)	Misidentification
Biochemical	
API 20CAUX	Rhodotorula glutinis, C. sake, Unidentified
API Candida	C. famata
Phoenix (BD Diagnostics)	C. haemulonii, C. catenulate
Vitek	C. haemulonii, C. lusitaniae, C. famata
MicroScan (Beckman Coulter)	C. famata, C. lusitaniae, C. guilliermondii, C. parapsilosis, C. albicans, C. tropicalis
MALDI-TOF MS	
Vitek MS (bioMerieux)	C. albicans, C. haemulonii, Not identified
MALDI Biotyper (Bruker Daltonics)	Neisseria meningitides serogroup A, Pseudomonas rhizosphaerae

Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, et al. *Candida auris*: A review of the literature. *Clin Microbiol Rev* 2017; 31:e00029-17.

Antibiotic Resistance Threats in U.S

- Urgent Threats
 - Carbapenem-resistant Acinetobacter
 - Candida auris
 - Clostridioides difficile
 - Carbapenem-resistant Enterobacteriaceae
 - Drug-resistant Neisseria gonorrhoeae

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. <u>https://www.cdc.gov/drugresistance/biggest-threats.html</u>. Accessed July 30, 2020.

C. auris Antifungal Resistance

Antifungals	India, Pakistan, South Africa, and Venezuela (54 isolates)	U.S. (reported to CDC)
Fluconazole	93 %	90 %
Amphotericin B	35 %	30 %
Echinocandins	7 %	5 %

Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous Emergence of Multidrug-Resistant *Candida auris* on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. *Clin Infect Dis* 2017; 64:134-140. Centers for Disease Control and Prevention. *Candida auris*. <u>https://www.cdc.gov/fungal/candida-auris/index.html12</u>. Accessed July 30, 2020.

C. auris Proposed Resistance Mechanism

- Twelve *Erg11* mutations
- Efflux pump activity contributes to azole resistance
- FKS mutations
- Amphotericin B resistance?

Hata DJ, Humphries R, Lockhart SR., and for the College of American Pathologists Microbiology Committee. *Candida auris*: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. *Archives of Pathology & Laboratory Medicine* 2020; 144:107-114.

C. auris Antifungal Susceptibility

Drug Class	Drugs	Tentative MIC Breakpoints (µg/mL)
Triazole	Fluconazole	≥32
	Voriconazole and other second generation triazoles	N/A
Polyene	Amphotericin B	≥ 2
Echinocandin	Anidulafungin	≥ 4
	Caspofungin	≥ 2
	Micafungin	≥ 4

Centers for Disease Control and Prevention. *Candida auris*. <u>https://www.cdc.gov/fungal/candida-auris/index.html12.</u> Accessed July 30, 2020.

Treatment Recommendations

- Echinocandin first line treatment
- Other options are still in development
 - Antifungal combinations
 - New drugs like Ibrexafungerp (SCY-078)

Bidaud AL, Botterel F, Chowdhary A, Dannaoui E. *In vitro* antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against *Candida auris* shows no antagonism. *Antimicrob Agents Chemother* 2019; 63(12):e01393-19.

Scorneaux B, Angulo D, Borroto-Esoda K, Ghannoum M, et al. SCY-078 is fungicidal against *Candida* species in time-kill studies. *Antimicrob Agents Chemother* 2017; 61:e01961-16.

In Summary...

- Sudden emergence globally
- Colonization and transmission in healthcare settings
- Mis-identification from many systems
- Potential to gain pan resistance to antifungals

References

- 1. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev* 2007; 20:133-163.
- 2. Forsberg K, Woodworth K, Walters M, Berkow EL, et al. *Candida auris*: The recent emergence of a multidrug-resistant fungal pathogen. *Medical Mycology* 2019; 57:1–12.
- 3. Centers for Disease Control and Prevention. *Candida auris*. <u>https://www.cdc.gov/fungal/candida-auris/index.html12</u>. Accessed July 30, 2020.
- 4. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, et al. *Candida auris*: A review of the literature. *Clin Microbiol Rev* 2017; 31:e00029-17.
- 5. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. <u>https://www.cdc.gov/drugresistance/biggest-threats.html</u>. Accessed July 30, 2020.
- 6. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous Emergence of Multidrug-Resistant *Candida auris* on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. *Clin Infect Dis* 2017; 64:134-140.
- 7. Hata DJ, Humphries R, Lockhart SR., and for the College of American Pathologists Microbiology Committee. *Candida auris*: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. *Archives of Pathology & Laboratory Medicine* 2020; 144:107-114.
- 8. Bidaud AL, Botterel F, Chowdhary A, Dannaoui E. *In vitro* antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against *Candida auris* shows no antagonism. *Antimicrob Agents Chemother* 2019; 63(12):e01393-19.
- 9. Scorneaux B, Angulo D, Borroto-Esoda K, Ghannoum M, et al. SCY-078 is fungicidal against *Candida* species in time-kill studies. *Antimicrob Agents Chemother* 2017; 61:e01961-16.

Disclosures/Potential Conflicts of Interest

Upon Pearl submission, the presenter completed the Clinical Chemistry disclosure form. Disclosures and/or potential conflicts of interest:

- Employment or Leadership: No disclosures
- Consultant or Advisory Role: No disclosures
- Stock Ownership: No disclosures
- Honoraria: No disclosures
- **Research Funding:** No disclosures
- **Expert Testimony:** No disclosures
- Patents: No disclosures

AACC

Better health through laboratory medicine.

Thank you for participating in this *Clinical Chemistry* Trainee Council Pearl of Laboratory Medicine.

Find our upcoming Pearls and other Trainee Council information at www.traineecouncil.org

Download the free *Clinical Chemistry* app on iTunes today for additional content!

