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FROM THE MIND OF 
THE CHAIR 

 

Happy March to everyone! 

Spring is just around the 

corner, and hope is in the air 

as more and more people get 

vaccinated. I am crossing my 

fingers that things continue to improve, and we 

can meet in person at the next AACC Annual 

Meeting, which was just moved to Atlanta.  

Speaking of the Annual Meeting, don’t forget 

that poster abstracts are due April 7th. If you are 

eligible for either of the two PMF Division 

Poster Awards, please check the box to 

indicate you would like to be considered. Our 

Division members continue to present 

outstanding scientific research, and we enjoy 

rewarding their endeavors.  

If you are looking to become more involved in 

AACC, please check out the opportunity to 

volunteer on one of AACC’s five core 

committees.  Many committees are looking for 

new members, and information about each 

committee can be found on AACC.org. 

In this issue of the newsletter, we discuss G in 

The ABCs of Pediatric Laboratory Medicine, 

and G is for Glomerular Filtration. Excerpts from 

the literature highlights an article on machine 

learning in the biochemical genetics laboratory. 

In our Interview with a Distinguished Colleague, 

we talk with Dr. Shannon Haymond, a past 

Chair of the PMF Division and the next 

President-Elect of AACC. 

 

Angela Ferguson, PhD 

Chair, AACC PMF Division 
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 THE ABC’S OF PEDIATRIC 
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Measuring Glomerular Filtration Rate 

Measured glomerular filtration rate (mGFR) 

provides an accurate patient specific value for 

assessing kidney function in both adult (> 18 

years of age) and pediatric populations. To 

achieve an accurate mGFR, clearance markers 

specific to glomerular filtration are used, 

including inulin, inhexol and iothalamate. These 

markers are filtered solely via the glomerulus 

and are not secreted or reabsorbed by the renal 

tubules, synthesized or metabolized by the 

kidneys making them ideal for GFR 

measurement studies. The rate at which inulin 

is filtered by the glomerulus is defined by GFR x 

Pin and is equal to the rate at which inulin is 

excreted, Uin x V (equation 1), where P is the 

plasma concentration of inulin, U is the urine 

concentration of inulin and V is the volume of 

urine collected per set time often reported out 

as mL/day or L/day (equation 2) (1). GFR is 

measured in mL/min per the accepted body 

surface area of 1.73 m2. 

GFR (mL/min per 1.73 m2) x Pin (mg/dL) = Uin 

(mg/dL) x V (mL/min)                                 (1) 

GFR (mL/min per 1.73 m2) = (Uin (mg/dL) x V 

(mL/min)) / Pin (mg/dL)                                                  (2) 

Renal inulin clearance provides an accurate 

measure of GFR; however, the need for a 

constant IV to achieve uniform levels along with 

the need for urinary catheterization in pediatric 

patients (especially in very young children who 

are not yet toilet trained) means that the 

procedure is both complex and time-

consuming, making it impractical for routine 

clinical practice. Furthermore, this strategy 

presents a greater risk to patients as there is 

always a small risk of infection when placing a 

catheter. That said even in adults a 24-hour 

urine collection can be very challenging as 

patients will over- or under-collect and therefore 

catheterization may become necessary to 

achieve accurate results. Moreover, patients 

with bladder dysfunction are often unable to 

completely empty their bladder to provide a 

timed sample.  

Estimating Glomerular Filtration Rate 

Alternatively, there are many equations 

available for estimating glomerular filtration rate 

(eGFR). These equations utilize markers that 

are maintained at a constant concentration in 

serum to directly estimate kidney function. 

Creatinine a waste product of muscle 

metabolism is the most commonly used marker 

for eGFR with measurements traceable to 

isotopic dilution mass spectrometry (IDMS). 

Unfortunately, in pediatrics the lowest 

International Federation for Clinical Chemistry 

(IFCC) standard is 1 mg/dL, which is 

significantly higher than normal range for 

infants and children (1) as well as for patients 

with decreased muscle mass (e.g., oncology 

patients, patients with muscular dystrophy, 

patients with anorexia etc.). Creatinine is not 

used for mGFR because it undergoes tubular 

secretion (~10%) as well as glomerular 

filtration. Therefore, the resulting value is often 

an overestimate of mGFR. However, given that 

it should theoretically be maintained at a 

constant concentration in body fluids it is an 

ideal candidate for estimation equations.  
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The accepted equations used for calculating 
eGFR are different for adults (> 18 years old) 
and infants/children. Pediatric eGFR equations 
often utilize creatinine, cystatin C or a 
combination of the two markers. The most 
common creatinine-based equation in pediatric 
nephrology is the Bedside Schwartz equation 
which was updated in 2009 (2) (equation 3). 
The original Bedside Schwartz equation 
(equation 4) used k values based on age and 
sex where k is 0.33 for infants with low birth 
weight < 1 years old, 0.45 for infant at full term 
< 1 years old, 0.55 for children or adolescent 
girls and 0.70 for adolescent boys (3,4).  

eGFR (mL/min per 1.73 m2) = (0.413 x height 
(cm))/Scr (mg/dL)                                        (3) 

eGFR (mL/min per 1.73 m2) = (k x height 
(cm))/Scr (mg/dL)                                        (4) 

The simplicity of the Bedside Schwartz equation 
means that it is ideal for bedside applications. 
Furthermore, it was validated using the 
creatinine enzymatic assay traceable to IDMS. 
The original Bedside Schwartz equation was 
developed and validated using the original Jaffe 
assay (alkaline picrate colorimetric assay, prior 
to IDMS standardization) (5). However, the 
Jaffe assay often falsely elevates serum 
creatinine levels due to interfering chromogens 
which are more likely to cause an issue in infant 
and child samples due to them having lower 
creatinine concentrations (6). The creatinine 
enzymatic assay which is more specific than 
the Jaffe assay and traceable to IDMS is 
becoming more common. Creatinine 
measurements performed using IDMS 
traceable enzymatic methods used with the 
original Bedside Schwartz equation will lead to 
an overestimate of eGFR (7). For this reason, 
the updated Bedside Schwartz equation has 
become the new gold standard creatinine-
based equation.  
 
Another marker that is less influenced by 
muscle mass is cystatin C. Cystatin C is freely 
filtered by the glomerulus but unlike creatinine 
is not secreted by the renal tubules, instead it is 
reabsorbed and metabolized. Therefore, the 
concentration of cystatin C during healthy 

kidney function should be maintained at a 
steady concentration in serum. It is therefore 
ideal marker for confirmatory eGFR in pediatric 
patients who have an unstable muscle mass. 
The univariate cystatin C-based equation was 
introduced in 2012 (8) (equation 5). 

eGFR (mL/min per 1.73 m2) = 70.69 × [(cystatin 
C (mg/L)−0.931]                                               (5) 

Unlike the updated Bedside Schwartz equation, 
the cystatin C-based equation was developed 
using an unstandardized assay for measuring 
cystatin C. In 2010 an IFCC  standard for 
cystatin C was introduced (9). Schwartz et al. 
recently recalibrated the cystatin C Siemens 
nephelometry assay using the new IFCC 
standard material (10). However, currently 
cystatin C measurements are more costly than 
creatinine and laboratories offering this testing 
is not as widespread as creatinine. 
Although these univariate equations are 
accepted, multivariate eGFR equations that 
combine both markers have been proven to 
provide a better eGFR measurement (11). The 
CKiD Schwartz equations of 2009 (2) (equation 
6) and the updated CKiD Schwartz equation of 
2012 (8) (equation 7) contain variables for 
height and weight and incorporates creatinine, 
cystatin C and blood urea nitrogen (BUN).  
eGFR (mL/min per 1.73 m2) = 39.1 x [height (m) 
/ Scr (mg/dL)]0.516 × [1.8 / ScysC (mg/L)]0.294 × 
[30 / BUN (mg/dL)]0.169 × [1.099male] x [height 
(m) / 1.4]0.188                                                                               (6) 
 

eGFR (mL/min per 1.73 m2) = 39.8 x [height (m) 

/Scr (mg/dL)]0.456 x [1.8 / ScysC (mg/L)]0.418 x 

[30 / BUN (mg/dL)]0.079 x [1.076male] [1.00female] x 

[height (m) / 1.4]0.179                                                            (7) 

BUN only appears in multivariate equations in 

combination with creatinine and cystatin C. This 

is because BUN is a waste product of protein 

breakdown whereby amino acids undergo 

deamination to form ammonia, which enters the 

urea cycle. It is therefore heavily influenced by 

protein intake and also dependent on liver 

function and metabolic rate. It is therefore not 

an ideal standalone marker for eGFR 
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calculations when compared to creatinine and 

cystatin C.   

The CKiD 2009 equation is recommended by 

current national guidelines. However, in 

situations where the creatinine concentration is 

unreliable a confirmatory estimation using the 

cystatin C-based equation could be beneficial 

providing that both equations agree to within 

±15% (11). If the values fall within 15% of each 

other proceeding with the multivariate CKiD 

equation is ideal (11). There may be cases, 

however, where a discrepancy between the two 

markers occurs. Low creatinine with increased 

cystatin C is observed in patients with chronic 

kidney disease (CKD), low muscle mass, 

increased cystatin C production 

(hyperthyroidism) and following dialysis (12). 

Elevated creatinine with low cystatin C is 

observed in patients with increased muscle 

mass/creatinine supplementation, decreased 

cystatin C production (hypothyroidism) and 

recirculation of urinary creatinine (12).  

When choosing an eGFR equation it is 

important to consider how it was validated and 

the details surrounding the population it was 

validated on to get an idea of its expected 

performance when it is applied in routine 

practice. The Chronic Kidney Disease in 

Children study cohort was used to validate both 

the updated Bedside Schwartz equation and 

the CKiD Schwartz equation. The validation 

population was aged between 1 – 16 years old 

with CKD (eGFR 15 – 75 mL/min per 1.73 m2) 

and used a standardized serum creatinine 

assay traceable to IDMS (11). Cystatin C was 

measured using turbidimetry in the 2009 CKiD 

Schwartz equation and nephelometry in the 

2012 updated CKiD Schwartz equation. 

Therefore, these equations may not provide an 

accurate estimation in mild CKD patients or 

individuals with normal kidney function. Also, 

this equation has not been validated in the 16-

18yr age group and neonates.  

Accuracy and precision are extremely important 

for the early detection of acute kidney disease 

(AKI), monitoring medication related 

nephrotoxicity, staging CKD and monitoring 

progression for classification and transplant 

among others. Moving forward pediatric eGFR 

calculations should be validated for all levels of 

kidney function, include multiracial populations 

and cover the full age spectrum (≤ 18 years 

old). It is also important to consider the 

changeover between pediatric and adult 

equations at the age of 18-year-old. Full age 

spectrum equations (13,14) have emerged 

recently in a bid to address biases in the latter 

issue, however there is still much work to do to 

ensure that eGFR values provide a true 

representation of kidney function. 
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Machine learning in the Biochemical 
Genetics Lab 
 
Quantitative measurement of plasma amino 

acids (PAA) is important for detecting, 

confirming, and following several inborn errors 

of metabolism (IEM). The biochemical genetics 

labs (BGL) that offer PAA and other metabolic 

tests typically provide interpretations to aid with 

result comprehension and decision making. 

Training and competency in this service are 

usually acquired “on the job”, rather than as a 

part of routine lab medicine training. For new 

BGL directors, or labs with heavy workloads, 

this can be a time-consuming task. As such, 

having automated clinical decision support tools 

to assist with PAA pattern 

recognition/interpretation selection is an 

attractive possibility to increase productivity.  

The September 2020 issue of Clinical 

Chemistry includes a study titled: A Machine 

Learning Approach for the Automated 

Interpretation of Plasma Amino Acid Profiles by 

Wilkes et al (1). This study, examining the 

performance of 3 machine learning algorithms 

to identify disorders/conditions from authentic 

PAA results, was performed by researchers 

from Imperial College Healthcare in London, 

UK. The authors began by compiling 2,392 

previously released PAA profiles, supplemented 

with select results from relatively uncommon 

IEM. Each result/interpretation was re-reviewed 

by two board-certified clinical biochemists and 

data was filtered so that only one profile per 

individual was included. Profiles with missing 

values were removed and individual amino acid 

measurements falling outside of the assay’s 

linear range were transformed to absolute 

values. The remaining 2,084 profiles were 

imported into R statistical software for 

organization, training, and validation of the 28 

included features (sex, 22 individual AA, and 5 

AA ratios). Notably, 69% of the profiles included 

represented “no significant metabolic 

abnormality”, whereas the remainder were 

classified as diagnostic for various IEMs or 

representative of other conditions (“abnormal”).   

The machine learning (ML) algorithms tested 

were all freely available forest-based 

approaches: random forests (RF), weighted-

subspace random forests (WSRF), and extreme 
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gradient boosted trees (XGBT). Nested, 

stratified k-fold repeated cross-validation was 

applied to estimate the accuracy of each 

algorithm for interpreting results not included in 

the original data set (2). This type of cross-

validation is ideal for tuning hyperparameters 

from an imbalanced data set (i.e. optimizing 

performance to ensure accurate identification of 

underrepresented IEM/conditions). Following 

model evaluation, the authors tested each 

algorithm’s ability to differentiate abnormal 

profiles from those without significant 

abnormalities. Precision recall area under the 

curve (PRAUC) ranged from 0.921 (RF) to 

0.953 (XGBT) and no significant improvement 

was achieved by including down-sampling (to 

further account for the imbalanced data set) 

and/or Bortuga feature selection (to reduce 

noise). PRAUC is a measure of the positive 

predictive value (precision) at various sensitivity 

(recall) thresholds.  This is an appropriate 

metric for ML evaluations when the question of 

interest is binary, the data set is imbalanced, 

and there is interest in defining the performance 

of a model to identify underrepresented classes 

(abnormal results).   

The next question addressed was: how well 

does each algorithm perform at identifiying 

individual IEM/conditions? This was achieved 

by applying the same cross-validation 

approach, applied to abnormal profiles only, 

and calculating macro-averaged F4 scores. 

Similar to binary discrimination, XGBT (0.776) 

was the most accurate while RF was not far 

behind (0.758). Feature selection with XGBT 

revealed that all data elements, except sex, 

contributed to recognition of individual IEMs. 

Finally, the authors evaluated how applying all 

three models, in concert, influenced class 

discrimination. This ensemble approach was 

performed by analyzing PAA results using all 3 

algorithms, calculating the mean probability for 

all possible interpretations from the 3 

classifiers, and assigning the interpretation with 

the highest probability as the predicted answer. 

This strategy accounted for variability between 

classifiers and resulted in modest improvement 

in accuracy relative to individual analyses.  

Wilkes et al. effort demonstrates that ML 

algorithms can be tuned and optimized for 

accurate PAA result interpretation. Despite the 

impressive performance overall, the group 

points out several shortcomings of their 

method. For example, although optimal 

performance was observed using the ensemble 

approach, some false positives were noted 

(e.g.IEM/condition assigned when the correct 

classification should have been no significant 

metabolic abnormality). These false positives, 

however, were a consequence of appropriately 

tuning the algorithms so that more weight was 

placed on reducing false negatives. Another 

limitation was the lack of clinical information 

included in the original data set. While part of 

mastering PAA sign-out is pattern recognition, 

results should not be interpreted in isolation. 

Clinical findings, including but not limited to 

history/physical, medications, diet, routine lab 

results, radiographic findings, and newborn 

screening results, are important elements that 

help us fine-tune individual messages. Future 

studies, including more diagnostic profiles and 

incorporating other clinical information, may 

improve interpretation accuracy. For now, 

however, the authors acknowledge that a ML-

approach for PAA interpretation does not 

negate the need for expert human result review. 

Rather, they suggest such tools could be used 

for “first pass analysis”, to identify potentially 

informative profiles for intensive human review.  
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Interview with a Distinguished 
Colleague 

By Angela Ferguson, PhD 

 
Shannon Haymond, PhD, DABCC, FAACC  
Vice Chair for Computational Pathology 

 

Director, Mass Spectrometry, 

Ann & Robert H. Lurie 

Children’s Hospital of Chicago 

 

Associate Professor of 

Pathology, Northwestern 

University Feinberg School of 

Medicine 

What changes do you 

see in the future of 

pediatric or maternal fetal laboratory 

medicine? 

Laboratories, like many other industries, are 

still feeling the effects of the COVID-19 

pandemic. A silver lining for our field was the 

increased public awareness of clinical 

laboratory testing and its role. I think this has 

created an unprecedented opportunity for 

laboratories to demonstrate their value and 

expertise. I hope that the future includes us 

building on this momentum to improve patient 

care and laboratory services. I also hope we 

continue to realize the benefits of lab analytics 

with better access to data and tools to help use 

those data for decision making. I am interested 

to see how expanded genomic and 

metabolomic testing changes the landscape for 

diagnosis of pediatric disease. 

 

What development would you like to see 

occur in pediatric laboratory medicine over 

the next 3 years? 

It would be great if we saw success from 

disruptive technologies for collection and 

analyses of small sample volumes. There have 

been recent advances in the development of 

micro collection devices and in using automated 

analyzers for analysis of microsamples, so it 

seems that we may be on the cusp. I would like 

to see this become more broadly available and 

scalable in the next 3 years.  

 

Congratulations on your nomination to the 

next slate of AACC officers! What are you 

most looking forward to in your year as 

president? 

Thank you! It is quite an honor to be selected 

as the next President-Elect of the association. I 

am looking forward to the opportunity to interact 

with AACC members and AACC’s partner 

organizations. I am also excited to help 

advance AACC’s strategic initiatives, 

particularly those related to data analytics.  

 

2020-2021 PMF Division Executive 

Board 
Chair: Angela Ferguson, PhD 

 

Chair Elect: Stanley Lo, PhD 

 

Past Chair: Alison Woodworth, PhD 

 

Members At Large: 

Van Leung-Pineda, PhD  

Amy Karger, PhD 

Jane Dickerson, PhD 

Laura Smy, PhD 

 

Secretary: Mark Kellogg, PhD 

 

Treasurer: Joe Wiencek, PhD 

 

Newsletter Editor: Sarah Wheeler, PhD 

 
Newsletter Editorial Board: 
Khushbu Patel, PhD 
Stephen Roper, PhD 
 
Fellow Representative: Erin Schuler, PhD

  


