

Personalized Medicine:

The Changing Landscape of Healthcare

American Association of Clinical Chemistry Annual Meeting
San Diego, California

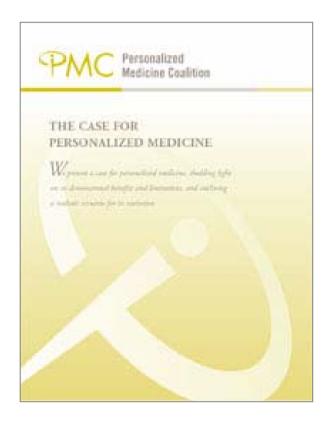
July 14th, 2007

Edward Abrahams, Ph.D.

Executive Director

Personalized Medicine Coalition

Learning Objectives


- List the advantages for a personalized medicine approach to healthcare
- Illustrate how personalized medicine impacts therapeutic drug management.
- Understand the regulatory issues of personalized medicine reimbursement
- Explain the role of the Personalized Medicine Coalition as a motivator for change.

Personalized Medicine:

What is it?

What is Personalized Medicine?

By using molecular analysis to achieve optimum medical outcomes in the management of a patient's disease or disease predisposition, personalized medicine promises to introduce a new standard of healthcare.

What Are the Potential Benefits of Personalized Medicine?

Advocates of personalized medicine stress its potential to:

- Detect disease at an earlier stage, when it is easier to treat effectively
- Enable the selection of optimal therapy and reduce trial-and error prescribing
- Reduce adverse drug reactions
- Increase patient compliance with therapy
- Improve the selection of targets for drug discovery
- Reduce the time, cost, and failure rate of clinical trials
- Revive drugs that failed clinical trials or were withdrawn from the market
- Avoid withdrawal of marketed drugs
- Shift the emphasis in medicine from reaction to prevention
- Reduce the overall cost of healthcare


What is Personalized Medicine?

Current Practice

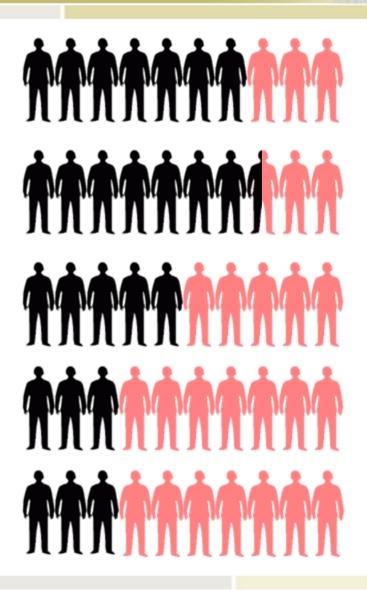
Trial and error

Personalized Medicine

The right treatment for the right person at the right time

Major Drugs Ineffective for Many...

Hypertension Drugs 10-30%ACE Inhibitors


Heart Failure Drugs 15-25%
Beta Blockers

Anti Depressants 20-50%

Cholesterol Drugs 30-70% Statins

Asthma Drugs 40-70%

Beta-2-agonists

... And Harmful to Some

- 100,000 deaths per year
- Just in hospitals: about 6.7% of patients (2.2 million) experience serious adverse drug reactions

Serious adverse drug reactions in even smaller percentages of treated populations have led to the withdrawal of several drugs from the market

Zelnorm

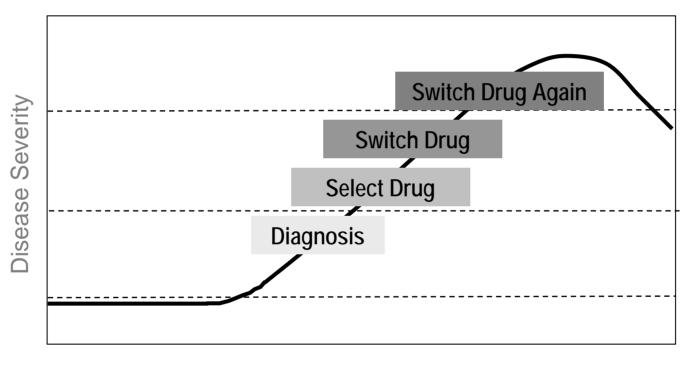
Vioxx

Cylert

"Are good drugs going to the wrong people?"

Rezulin

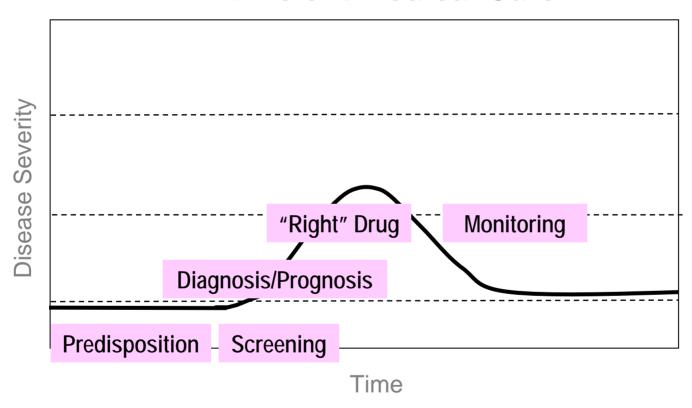
Baycol


Lotronex*

^{*}Reintroduced in 2002 after a very strong campaign from patients who saw it as an important drug that should be made available again, even with restrictions.

The Old Paradigm: Treatment of Disease

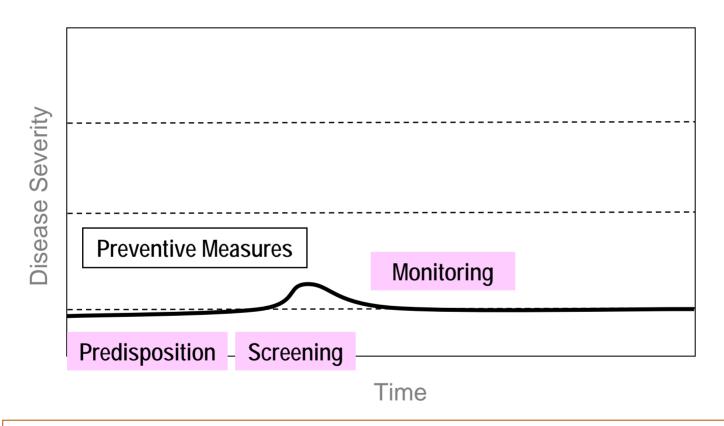
Reactive Medical Care


Time

Diagnose Disease; Treat Symptoms; Costly, Trial and Error Treatment

Personalized Medicine Paradigm: Health Management

Efficient Medical Care



Health Management; Molecular Screening; Early Detection; Rapid Effective Treatment; Improved Quality of Care

Personalized Medicine Paradigm: Moving Healthcare Upstream

Preventive Medical Care

Predisposition Guides Prevention; Treat the Molecular Markers vs. Symptoms and Disease; Healthcare Cost Reduction

Personalized Medicine In Research & Development

Safer, More Effective Drugs

Identify disease targets, speed clinical trials, and advance more drugs that are safe and effective for specific populations

Faster path to disease targets using genetic data

Speed trials by testing on patients selected for likely high response and safety

Target dentification

Target Validatior

Lead Development

Preclinica

Clinica

Marke

Knowledge of biological pathways and gene variants helps eliminate poor candidates

Target optimal population by combining drug with molecular diagnostic test

What Drives the Movement to Personalized Medicine?

Safer, More Effective Drugs

End of one-size-fits-all drugs. New drugs will be safe and effective for specific populations.

Faster Time to a Cure

Using genomic information to find disease targets. Speedier clinical trials based on high responder population.

Cost-Effective Healthcare

Reduced costs, due to avoidance of futile treatments and improved clinical outcomes.

The Blockbuster Model is "Broken"

"The challenge for us as an industry ... is to move more from a blockbuster model to a targeted model. We need a better value proposition than today."

Sidney Taurel Chairman, President and CEO Eli Lilly and Company

It's Already Here... In the Media

January 3
Test Could Gauge Risk in Patients with
Lung Cancer

February 7

"Test to Predict Breast Cancer Relapse is Approved"

February 14

"Kaiser Wants 2 Million Enrollees to Enter Genetic Research Program "

"Genetics and Diabetes: New Research on DNA Testing May Lead to New Therapies"

The Boston Globe

May 21

"Genome-wide Association Research Speeds Discoveries"

The New York Times

June 19

"On the Horizon, Personalized Depression Drugs"

It's Already Here ... in Emerging Treatments

Variable Target	Therapy/Prevention	Disease
Alpha-adducin	ACE inhibitors	Hypertension
CETP	HMG-CoA reductase inhibitors	Atherosclerosis
CYP2C9/VKORC1	Warfarin	Coagulation disorders
Transcriptional profiles	Chemotherapy protocols	Non-Hodgkin's lymphoma
Transcriptional profiles	Chemotherapy protocols	AML Leukemia
OncoVue® (117 loci)	Surveillance	Sporadic breast cancer
KRAS mutation	Tyrosine kinase inhibitors	Lung cancer drug resistance

It's Already Here ... in Clinical Practice

Variable Target	Therapy/Prevention	Disease
BCR-abl; c-KIT	Gleevec/Imatinib	Cancer/Chronic myelogenous leukemia
BRCA1/2	Surveillance; tamoxifen; prophylactic surgery	Breast and ovarian cancer
EGFR	Tarceva, Iressa	Lung cancer
Estrogen receptor	Tamoxifen	Breast cancer
HER-2/neu receptor	Herceptin/Trastuzumab	Breast cancer
PML-RAR alpha	Tretinoin/All trans retinoic acid	Acute Myelocytic Leukemia
p16 gene/CDKN2A	Surveillance	Melanoma
TPMT	Mercaptopurine	Acute Lymphocytic Leukemia
TruGene®-HIV 1 Genotyping	Anti-retroviral drugs	HIV virus drug resistance

It's Already Here ... in Clinical Practice (cont'd)

Variable Target	Therapy/Prevention	Disease
Oncotype DX: 16 gene profile	Chemotherapy protocols	Breast cancer recurrence
MammaPrint 70-gene profile	Aduvant chemotherapy	Breast cancer recurrence
Familion® 5-gene profile	Pharma/Lifestyle prevention	Cardiac rhythm abnormalities/side effects
AlloMap® gene profile	Immunosuppressive drugs	Heart transplant rejection
Amplichip® CYP2D6/2D19	~25% of prescribed drugs	Various diseases – drug metabolism
UGT1A1	Camptosar® (irinotecan)	Colon cancer
Sprycel (dasatinib)	BCR-Abl	Gleevec resistance

Personalized Medicine:

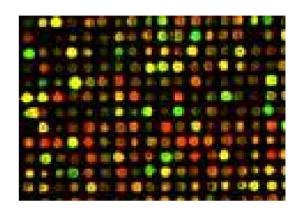
How Will It Affect Healthcare?

Changing Role of the Patient

- Greater knowledge of one's genetic risks
- Actionable lifestyle and nutrition Rx for reducing risk of disease
- Greater control and patient-centered access to medical records
- Treatment decisions will be improved by an educated patient
- Genetic information affects every aspect of the individual's life

Changing Role of the Healthcare Provider

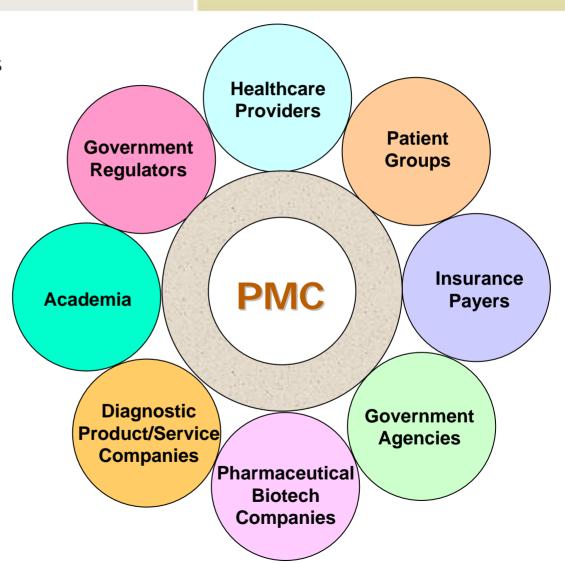
- Physician as manager, rather than repository of medical knowledge
- Greater reliance on IT for decision support
- Increased use of molecular tests
- Highly networked medical care
- Healthcare management based on pro-active treatment and longer term outcomes
- New ethical and legal issues/quandaries


New Business Strategies for Pharma

- Uncertain economics of drug development and commercialization
- Regulatory mandates could disrupt development budgets and market plans
- "Personalization" of drugs may affect product lifecycle
- Changing paradigm for marketing and sales of pharmaceutical products. Greater focus on patient education emphasizing proactive care, prevention, and targeted treatments.

New Business Strategies for Clinical Laboratories

- Increase emphasis on proactive testing for pre-symptomatic individuals
- Educate physicians and patients to capitalize on new genetic/molecular tests
- Promote standardization of analytical genomic/proteomic technologies, sample collection, handling and storage
- Work with diagnostics developers to establish outcomes evidence for emerging tests


Personalized Medicine Coalition:

An Agent of Change

What is the PMC?

Convening Stakeholders and Aligning Objectives

The Personalized Medicine Coalition (PMC), representing a broad spectrum of academic, industrial, patient, provider, and payer communities, seeks to advance the understanding and adoption of personalized medicine concepts and products for the benefit of patients.

Addressing Public Policy Issues

The potential impact of Personalized Medicine is very broad and far-reaching. There are an array of issues facing us:

- Intellectual property
- Regulatory oversight
- Reimbursement
- Privacy / Ethics
- Healthcare insurance
- Patient education
- Physician education
- Hospital system infrastructure
- R&D incentives

Major Policy Initiatives

- Genetic privacy building confidence among the public to ensure widespread acceptance of genetics in medical care
- Regulation paving the way for market approval of personalized medicine drugs and diagnostics
- Reimbursement ensuring coverage of predictive diagnostics, and targeted treatments for a new paradigm of healthcare
- R&D Business Incentives creating incentives for R&D to generate a stream of linked diagnostics and therapeutics
- Investment increasing government funding for basic and translational research

Genetic Privacy and Protection

According to polls conducted on genetic privacy:

- 93% of Americans believe that if someone has had a genetic test, their employer should not be able to use the information in hiring or promotion, and their insurer should not use the information to reduce benefits or increase prices (Genetics and Public Policy Center, Johns Hopkins University, 2007)
- 76% of Americans think Congress should protect genetic information (Genetics and Public Policy Center, Johns Hopkins University, 2007, Research! America, 2006)

Genetics Information Non-discrimination Act (GINA) passes US House by a vote of 420-3 (April 25, 2007)

Genetic Privacy and Protection

Encourage use of genetic services and participation in clinical trials.

- Support passage of the Genetic Information Non-discrimination Act (GINA)
- Define patient and healthcare worker access and control of electronic medical records
- Ensure protections against insurer and employer discrimination are enforceable
- Monitor public attitudes toward genetic testing to measure progress

Regulation

Create a more predictable regulatory environment that keeps pace with scientific advances and evolving business models.

- Ensure new regulations encourage innovation. Support the US FDA Guidance on voluntary PGx data submissions
- Advocate for continued guidance on Rx/Dx co-development
- Advocate for guidance on voluntary post-approval surveillance of drugs, when genetic information on ADRs and efficacy emerge
- Promote global regulatory harmonization on the FDA model of PGx data submissions

Reimbursement - Diagnostics

Place reimbursement on a sound economic footing.

Diagnostics comprise 5% of hospital costs, yet leverage 70% of healthcare decisions.

- Increase level of reimbursement for molecular diagnostic tests under the physician fee schedule vs. laboratory fee schedule
- Create incentives for insurance industry to reimburse preventive testing and treatments
- Support new formulary models that incorporate concepts of genetic segmentation on safety and efficacy, and preventive treatment
- Shift from focus on short-term healthcare and unit costs, to longterm costs and outcomes
- Demonstrate and communicate savings in doctor visits, length of hospital stay and other medical procedures

R&D Business Incentives

Encourage industry to develop personalized medicine products through incentives in regulation, patenting and other areas of government policy.

Encourage industry to develop personalized medicine products by establishing public policies that:

- Credit companion diagnostics R&D
- Authorize funds for companion diagnostic development
- Streamline the FDA approval process for companion diagnostics
- Accelerate the reimbursement of companion diagnostics

Investment

Invest in proteomics, genomics, imaging and other technologies that are essential to meet the need for validated biomarkers.

- Support full funding of NIH
- Support programs in basic research
- Support programs that translate basic research into clinical therapeutics, diagnostics and methods for prevention

PMC Member Organizations

Research and Educational Institutions

AACC (American Association of Clinical Chemistry)

American Institute for Medical and Biological Engineering (AIMBE)

American Society of Human Genetics (ASHG)

Bentley College

The Brain Institute at the University of Utah

Center for Molecular Medicine

Cincinnati Children's Hospital Medical Center

Cleveland Clinic Genomic Medicine Institute

The Critical Path Institute (C-Path)

Duke University

Genetics, Ethics & Policy Consulting

The George Washington University Medical Center

Harvard-Partners Center for Genetics and Genomics

Hudson-Alpha Institute for Biotechnology

Institute for Genomics & Systems Biology, The University of Chicago and Argonne National Laboratory

Karolinska Institute

Marshfield Clinic

Mayo Clinic

National Coalition for Health Professional Education in Genetics (NCHPEG)

The Ohio State University Medical Center

National Jewish Medical and Research Center

PENN Medicine

Vanderbilt University Medical Center

Health Insurance

Aetna

WellPoint

Industry & Trade Associations

American Clinical Laboratory Assoc.

PhRMA

Emerging Biotech/Pharma

Perlegen Sciences, Inc

Xanthus Life Sciences, Inc.

Consumer Genetic Testing

DNA Direct, Inc.

Strategic Partners

Boston Healthcare Associates, Inc.

Center for Medicine in the Public Interest

Clear Point Health

Defined Health

Diaceutics

Feinstein Kean Healthcare

Genomic Healthcare Strategies

IDA Ireland

KFDunn Life Sciences, a division of Aloysius Butler & Clark

Nixon Peabody LLP

PAREXEL International

Personalized Medicine Partners, LLC

Pri-Med Institute

Wilson Sonsini Goodrich & Rosati

Venture Capital

Boston Millennia Partners

Burrill & Company

Kleiner, Perkins, Caufield & Byers

MDV-Mohr Davidow Ventures

Pappas Ventures

Stephens Investment Management

PMC Member Organizations

Diagnostics

Aureon Laboratories, Inc.

Aviir

BG Medicine

Bio Research Support, Inc.

The Brain Resource Company Limited

dnaprint genomics, inc.

DNA Vision SA

Exagen Diagnostics, Inc.

Expression Analysis, Inc.

Genomas, Inc.

Genomic Health, Inc.

Gentris Corporation

Lipomics Technologies, Inc.

Monogram Biosciences

Nanosphere, Inc.

NeuroMark

Pathway Diagnostics

PGx Health (a division of Clinical Data, Inc.)

TheraGenetics Ltd.

XDx, Inc.

IT/Informatics

IBM Healthcare and Life Sciences

Lead Horse Technologies

Mirixa

Saffron Technology, Inc.

Theranos, Inc.

Clinical Laboratories

Kimball Genetics, Inc.

LabCorp

Quest Diagnostics

Patient Advocacy Groups

Alliance for Aging Research

FasterCures

Sarcoma Foundation of America

Agency Partners

Centers for Disease Control and Prevention

Centers for Medicare and Medicaid Services

National Cancer Institute

National Human Genome Research Institute

U.S. Food and Drug Administration

Research Tools

Affymetrix, Inc.

Applera Corporation

Applied Biosystems

Celera

Gene Logic

GenVault Corp.

HistoRx

Illumina. Inc.

Luminex Corporation

Nanogen, Inc.

Osmetech Molecular Diagnostics

Qiagen, Inc.

Large Biotech/Pharma

Abbott Molecular Inc.

AstraZeneca Pharmaceuticals

Eli Lilly and Company

Genzyme Corporation

Johnson & Johnson

Pharmaceutical Research &

Development LLC

Millennium Pharmaceuticals, Inc.

Pfizer, Inc.

Personalized Medicine Coalition

The Personalized Medicine Coalition, representing a broad spectrum of academic, industrial, patient, provider, and payer communities, seeks to advance the understanding and adoption of personalized medicine concepts and products for the benefit of patients.

The Personalized Medicine Coalition

To learn more, visit:

www.PersonalizedMedicineCoalition.org

Personalized Medicine Review

(Choose the best answer)

- What are benefits of Personalized Medicine?
 - 1. Treatment tailored to individual's genetics
 - 2. One physician for each patient
 - 3. Each individual has sequenced DNA
- What is the estimated number of deaths due to adverse drug reactions?
 - 1. 5 million per year
 - 2. 100,000 per year
 - 3. 1,000 per year
- Why would genetic characterization prior to therapy reduce the time to disease response to treatment?
 - 1. Drugs would be more effective
 - 2. Drugs would be used only for the genotype for which they were designed
 - 3. Optimum dosage could be assigned.
- Why would genetic characterization reduce the incidence of adverse events?
 - 1. Drugs would be less toxic
 - 2. Drugs would be used only for the genotype for which they were designed
 - 3. Pharmaceutical companies would be required to market safer drugs.

Personalized Medicine Review

(the best answer)

- What are benefits of Personalized Medicine?
 - 1. Treatment tailored to individual's genetics
- What is the estimated number of deaths due to adverse drug reactions?
 - 1. 100,000 per year
- Why would genetic characterization prior to therapy reduce the time to disease response to treatment?
 - 1. Drugs would be used only for the genotype for which they were designed
- Why would genetic characterization reduce the incidence of adverse events?
 - 1. Drugs would be used only for the genotype for which they were designed

AACC Online Evaluation Forms and Certificates

Thank you for participating in this activity. To obtain Credit for this course. Please visit our website at:

http://apps.aacc.org/ceaccent/cfm/page.cfm?Ac
tivityNumber=054-070LC-001

Then follow the online instructions. Thank you.

